Как вырабатывают электроэнергию: Как вырабатывается электрическая энергия в промышленных масштабах

Содержание

Откуда берется электричество? Источники электроэнергии

Жизнь современного человека организована таким образом, что ее инфраструктурное обеспечение задействует множество компонентов с разными технико-функциональными свойствами. К таким относится и электроэнергия. Рядовой потребитель не видит и не ощущает, как именно она выполняет свои задачи, но конечный результат вполне заметен в работе бытовой техники, да и не только. При этом вопросы, касающиеся того, откуда берется электричество, в представлении многих пользователей тех же домашних приборов остаются нераскрытыми. Для расширения знаний в этой области стоит начать с понятия об электроэнергии как таковой.

откуда берется электричество

Что такое электричество?

Сложность данного понятия вполне объяснима, так как энергию невозможно обозначить как обычный предмет или явление, доступное визуальному восприятию. При этом существуют два подхода к ответу на вопрос о том, что такое электричество. Определение ученых гласит, что электричество является потоком заряженных частиц, который характеризуется направленным движением. Как правило, под частицами понимаются электроны.

В самой же отрасли энергетики чаще рассматривают электроэнергию как продукт, вырабатываемый подстанциями. С этой точки зрения имеют значение и элементы, которые непосредственно участвуют в процессе формирования и передачи тока. То есть в данном случае рассматривается энергетическое поле, создаваемое вокруг проводника или другого заряженного тела. Чтобы приблизить такое понимание энергии к реальному наблюдению, следует разобраться с таким вопросом: откуда берется электричество? Существуют разные технические средства для производства тока, и все они подчинены одной задаче — снабжению конечных потребителей. Впрочем, до момента, когда пользователи смогут обеспечить свои приборы энергией, она должна пройти несколько этапов.

потребители электроэнергии

Выработка электричества

На сегодняшний день в сфере энергетики применяется порядка 10 видов станций, которые обеспечивают генерацию электричества. Это процесс, в результате которого происходит преобразование определенного вида энергии в токовый заряд. Иными словами, электричество формируется в ходе переработки другой энергии. В частности, на специализированных подстанциях используют в качестве основного рабочего ресурса тепловую, ветреную, приливную, геотермальную и другие виды энергии. Отвечая на вопрос относительно того, откуда приходит электричество, стоит отметить инфраструктуру, которой обеспечена каждая подстанция. Любой электрогенератор обеспечен сложной системой функциональных узлов и сетей, которые позволяют аккумулировать вырабатываемую энергию и готовить ее для дальнейшей передачи на узлы распределения.

альтернативные источники

Традиционные электростанции

Хотя за последние годы тенденции в энергетике меняются быстрыми темпами, можно выделить основные виды электростанций, работающих по классическим принципам. В первую очередь это объекты тепловой генерации. Выработка ресурса производится в результате сгорания органического топлива и последующего преобразования выделяемой тепловой энергии. При этом существуют разные виды таких станций, в числе которых теплофикационные и конденсационные. Главным отличием между ними является возможность объектов второго типа также генерировать и тепловые потоки. То есть при ответе на вопрос о том, откуда берется электричество, можно отметить и станции, которые параллельно производят и другие виды энергии. Кроме тепловых объектов выработки, достаточно распространены гидро- и атомные станции. В первом случае предполагается преобразование энергии от движения воды, а во втором — в результате деления атомов в специальных реакторах.

электричество в доме

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии. Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома. Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от интенсивности света.

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

что такое электричество определение

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети. Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей. Организации-поставщики прокладывают специальные трассы для организации сетевого распределения электроэнергии, используя при этом разные виды кабелей.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

выработка электричества

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Управление объектами электроэнергетики

Помимо организации электросетевого хозяйства, которое технически обеспечивает возможность передачи и распределения энергии для конечных потребителей, работа данного комплекса невозможна без систем управления. Для реализации этих задач поставщики используют оперативно-диспетчерские пункты, сотрудники которых реализуют централизованный контроль и управление работой вверенных им объектов электроэнергетики. В частности, подобные службы контролируют параметры сетей, к которым подключаются потребители электроэнергии на разных уровнях. Отдельно стоит отметить и отделы диспетчерских пунктов, которые выполняют техобслуживание сетей, предотвращая износы и восстанавливая повреждения на отдельных участках линий.

откуда приходит электричество

Заключение

За все время существования энергетическая отрасль претерпела несколько этапов своего развития. В последнее время наблюдаются новые перемены, обусловленные активным освоением альтернативных источников энергии. Успешное развитие этих направлений уже сегодня дает возможность использовать электричество в доме, полученное от индивидуальных бытовых генераторов независимо от центральных сетей. Впрочем, и в этих отраслях есть определенные сложности. В первую очередь они связаны с финансовыми затратами на закупку и монтаж соответствующего оборудования — тех же солнечных панелей с аккумуляторами. Но поскольку энергия, вырабатываемая от альтернативных источников, является полностью бесплатной, то перспективы дальнейшего продвижения этих областей сохраняют актуальность для разных категорий потребителей.

Бесплатное электричество — лучшие идеи и советы по их реализации (75 фото устройств)

Что такое альтернативная энергетика? Современный мир предлагает способы создания бесплатного электричества. Как его сделать своими руками?

Краткое содержимое статьи:

Альтернатива

В 1901 году знаменитый, гениальный учёный Николай Тесла сконструировал огромную башню Ворденклиф в Нью-Йорке. Компания JP Morgan взяла на себя финансовую часть проекта. Тесла хотел осуществить бесплатную радиосвязь и снабдить человечество бесплатным электричеством. Морган же просто ожидал беспроводную международную связь.

Идея бесплатного электричества привела в ужас промышленные и финансовые “Тузы”. Желающих революций в мировой экономике не оказалось, все держались за сверхприбыли. Поэтому проект свернули.

Так что же построил Тесла? Как он собирался сделать бесплатное электричество? В XXI веке всё большую поддержку получает идея альтернативной энергетики, работающей на других источниках. Своеобразным оппонентом нефти, углю, газу здесь выступают возобновляемые ресурсы Земли и других планет.


Из чего можно получить бесплатное электричество? Солнечный свет, энергия ветра, земли, использование приливов и отливов, мускульная энергия человеческого тела могут изменить будущее планеты. Уйдут в прошлое трубопроводы, саркофаги реакторов. Многие государства смогут освободить свою экономику от необходимости закупать дорогостоящие источники электричества.

Поиску альтернативных источников энергии, которые легко возобновляются, уделяют большое внимание. В последние десятилетия человечество волнуют проблемы чистоты экологии, экономичности ресурсов.

Технология

Чуть ниже рассматриваются варианты получения бесплатного электричества.

Ветряная электростанция. Голландия предлагает построить ветряную ферму огромных размеров в Северном море, и искусственный, оснащённый необходимым оборудованием остров, который возьмёт на себя роль энергетического хаба, распределяя электричество между 5 государствами.

Саудовская Аравия предложила создать турбины в виде “бумажных змеев”, и расположить их в воздухе, а не на земле. Несколько  стран имеют собственные поля с ветряными генераторами.

Солнечная электростанция. В продаже есть крыши, состоящие из солнечных панелей, а также панели из фотогальванического стекла, которыми можно облицовывать наружные стены домов. Американские учёные выпустили солнечные батареи в форме прозрачных плиток, которыми можно застеклить окна, чтобы вырабатывать электричество для дома.


Грозовая батарея – накопитель энергии от разрядов в атмосфере. Молнии перенаправляются в электросеть.

Тороидальный генератор TPU состоит из 3 катушек. Магнитный вихрь и резонансные частоты являются причиной появления тока. Изобрёл его С.Марк.

Приливные электростанции – работа зависит от приливов и отливов, положения Земли и Луны.

Тепловая электростанция – в качестве ресурса используются высокотемпературные грунтовые воды.

Сила человеческих мускулов – люди также вырабатывают энергию при движении, что можно использовать.

Термоядерный синтез – процессом можно управлять. Синтезируются более тяжёлые ядра из более лёгких. Способ не применяется, поскольку очень опасен.

Сам себе мастер

Бесплатное электричество можно сделать своими руками. Существует немало методов, чтобы соорудить устройства, вырабатывающие энергию. Для этого нужно лишь немного знаний и умений. Например:


Сделать элемент Пельтье – пластина, термоэлектрический преобразователь. Тепло получают от горящего источника, охлаждение производится теплообменником. Составляющие сделаны из неодинаковых металлов.

Соорудить генератор, собирающий радиоволны – парные конденсаторы, электролитические, плёночные, диоды маленькой мощности. Изолированный кабель 15 м применяют в роли антенны. Заземляющий провод крепится к газовой, водопроводной трубе.

Сконструировать термоэлектрический генератор- потребуются стабилизатор напряжения, корпус, охлаждающие радиаторы, термопаста, нагревающие пластины Пельтье.

Построить грозовую батарею – металлическая антенна и заземление. Потенциал накапливается между элементами устройства. Метод опасен, так как притягиваются молнии, чьё напряжение достигает 2000 Вольт.

Гальванический метод – медный и алюминиевый стержни вставляются в землю, на глубину 0,5 м, площадь между ними обрабатывают солевым раствором.

Что ещё?

Среди обычных, можно встретить и довольно необычные способы получения электричества. В последнее время идёт интенсивная работа учёных всего мира по развитию альтернативной энергетики. Мир ищет возможности для более широкого её использования.

Чуть ниже приводится небольшой обзор лучших способов и идей:


Термический генератор – преобразовывает тепловую энергию в электрическую. Встроен в отопительно-варочные печи.

Пьезоэлектрический генератор – работает на кинетической энергии. Внедряют в Танцполы, турникеты, тренажёры.

Наногенератор – применяется энергия колебаний человеческого тела при движении. Процесс отличается мгновенностью. Учёные работают над совмещением работы наногенератора и солнечной батареи.

Безтопливный генератор Капанадзе – работает на постоянных магнитах в роторе и бифлярных катушках в статоре. Мощность 1-10 кВт. За основу взято одно из изобретений Н.Тесла, но многие не верят в этот принцип. Ещё по одной из версий, настоящая технология аппарата удерживается в большом секрете.

Экспериментальные установки, которые работают на эфире – электро-магнитное поле. Пока ещё идут поиски, проверяются гипотезы, проводятся эксперименты.

Учёные подсчитали, что природных запасов, используемых в современной энергетике, может хватить ещё на 60 лет. Разработками в данной области занимаются лучшие умы. В Дании население пользуется ветровой энергетикой, составляющей 25%.

В России планируются проекты, по использованию восстанавливаемых источников в энергетической системе на 10%, а в Австралии на 8%. В Швейцарии большинство проголосовало за полный переход на альтернативную энергетику. Мир голосует за!

Фото методов получения бесплатного электричества

электрический угорь и его «энергостанция» / Хабр


Электрический угорь (Источник: youtube)

Рыба вида электрический угорь (Electrophorus electricus) — единственный представитель рода электрических угрей (Electrophorus). Встречается он в ряде приток среднего и нижнего течения Амазонки. Размер тела рыбы достигает 2,5 метра в длину, а вес — 20 кг. Питается электрический угорь рыбой, земноводными, если повезет — птицами или мелкими млекопитающими. Ученые изучают электрического угря десятки (если не сотни) лет, но только сейчас начали проясняться некоторые особенности строения его тела и ряда органов.

Причем способность вырабатывать электричество — не единственная необычная черта электрического угря. К примеру, дышит он атмосферным воздухом. Это возможно благодаря большому количеству особого вида ткани ротовой полости, пронизанной кровеносными сосудами. Для дыхания угрю нужно каждые 15 минут всплывать к поверхности. Из воды кислород брать он не может, поскольку обитает он в очень мутных и мелких водоемах, где очень мало кислорода. Но, конечно, главная отличительная черта электрического угря — это его электрические органы.

Они играют роль не только оружия для оглушения или убийства его жертв, которыми угорь питается. Разряд, генерируемый электрическими органами рыбы, может быть и слабым, до 10 В. Такие разряды угорь генерирует для электролокации. Дело в том, что у рыбы есть специальные «электрорецепторы», которые позволяют определять искажения электрического поля, вызываемые его собственным телом. Электролокация помогает угрю находить путь в мутной воде и находить спрятавшихся жертв. Угорь может дать сильный разряд электричества, и в это время затаившаяся рыба или земноводное начинает хаотично дергаться из-за судорог. Эти колебания хищник без труда обнаруживает и съедает жертву. Таким образом, эта рыба является одновременно и электрорецептивной и электрогенной.

Интересно, что разряды различной силы угорь генерирует при помощи электрических органов трех типов. Они занимают примерно 4/5 длины рыбы. Высокое напряжение вырабатывают органы Хантера и Мена, а небольшие токи для навигационных целей и коммуникационных целей генерирует орган Сакса. Главный орган и орган Хантера размещаются в нижней части тела угря, орган Сакса — в хвосте. Угри «общаются» между собой при помощи электрических сигналов на расстоянии до семи метров. Определенной серией электрических разрядов они могут привлекать к себе других особей своего вида.

Как электрический угорь генерирует электрический разряд?


Угри этого вида, как и ряд других «электрифицированных» рыб воспроизводят электричество тем же образом, что и нервы с мышцами в организмах других животных, только для этого используются электроциты — специализированные клетки. Задача выполняется при помощи фермента Na-K-АТФазы (кстати, этот же фермент очень важен и для моллюсков рода наутилус (лат. Nautilus)). Благодаря ферменту образуется ионный насос, выкачивающий из клетки ионы натрия, и закачивающий ионы калия. Калий выводится из клеток благодаря специальным белкам, входящих в состав мембраны. Они образуют своеобразный «калиевый канал», через который и выводятся ионы калия. Внутри клетки скапливаются положительно заряженные ионы, снаружи — отрицательно заряженные. Возникает электрический градиент.

Разница потенциалов в результате достигает 70 мВ. В мембране той же клетки электрического органа угря есть и натриевые каналы, через которые ионы натрия могут снова попасть в клетку. В обычных условиях за 1 секунду насос выводит из клетки около 200 ионов натрия и одновременно переносит в клетку приблизительно 130 ионов калия. На квадратном микрометре мембраны может разместиться 100- 200 таких насосов. Обычно эти каналы закрыты, но в случае необходимости они открываются. Если это произошло, градиент химического потенциала приводит к тому, что ионы натрия снова поступают в клетки. Происходит общее изменение напряжения от -70 до +60 мВ, и клетка дает разряд в 130 мВ. Продолжительность процесса — всего 1 мс. Электрические клетки соединяются между собой нервными волокнами, соединение — последовательное. Электроциты составляют своеобразные столбики, которые соединяются уже параллельно. Общее напряжение генерируемого электрического сигнала достигает 650 В, сила тока — 1А. По некоторым данным, напряжение может достигать даже 1000 В, а сила тока — 2А.


Электроциты (электрические клетки) угря под микроскопом

После разряда снова действует ионный насос, и электрические органы угря заряжаются. По мнению некоторых ученых, насчитывается 7 типов ионных каналов мембраны клеток электроцитов. Расположение этих каналов и чередование типов каналов влияет на скорость производства электричества.

Разряд электрической батареи


По результатам исследования Кеннета Катания (Kenneth Catania) из Университета Вандербильта (США), угорь может использовать три типа разряда своего электрического органа. Первый, как и упоминалось выше — это серия низковольтных импульсов, которые служат для коммуникации и навигационных целей.

Второй — последовательность из 2-3 высоковольтных импульсов продолжительностью несколько миллисекунд. Этот способ используется угрем при охоте на спрятавшуюся и затаившуюся жертву. Как только дано 2-3 разряда высокого напряжения, мышцы затаившейся жертвы начинают сокращаться, и угорь может без труда обнаружить потенциальную еду.

Третий способ — ряд высоковольтных высокочастотных разрядов. Третий способ угорь использует при охоте, выдавая за секунду до 400 импульсов. Этот способ парализует практически любое животное небольшого и среднего размера (даже человека) на расстоянии до 3 метров.

Кто еще способен вырабатывать электрический ток?


Из рыб на это способны около 250 видов. У большинства электричество — лишь средство навигации, как, например, в случае слоника нильского (Gnathonemus petersii).

Но электрический разряд чувствительной силы способны генерировать немногие рыбы. Это электрические скаты (ряд видов), электрический сом и некоторые другие.


Электрический сом (Источник: Wikipedia)

Джейсон Гэллент с коллегами провели секвенсирование генома ряда рыб с электрическими органами, и выяснили, что многие из изученных ими видов не являются родственниками. «Изобретение» природой электрических органов у рыб шло параллельно, но строение батарей очень схоже у всех. Всего ученые насчитали 6 независимых друг от друга эволюционных линий, приведших к появлению электрических органов. Пожалуй, электрический угорь является одним из видов рыб, которые используют этот орган наиболее искусно.


Источник: animalpicturesociety.com

От АЭС до розетки. Как электричество попадает в воронежские дома . Последние свежие новости Воронежа и области

Современный человек не мыслит жизни без электричества. Если электроснабжение прекратится даже на несколько часов, жизнь мегаполиса парализуется. Более 90% электроэнергии в Воронежской области вырабатывает Нововоронежская атомная электростанция. Корреспонденты РИА «Воронеж» побывали на НВ АЭС и выяснили, как атомная энергия превращается в электричество.

Когда появилась первая атомная электростанция?

В 1898 году известные ученые Мария Склодовская-Кюри и Пьер Кюри обнаружили, что настуран – минерал урана – радиоактивен, а в 1933 году американский физик Лео Силард впервые выдвинул идею цепной ядерной реакции – принцип, который после его осуществления на практике открыл дорогу для создания ядерного оружия. Первоначально энергия атома использовалась в военных целях. Впервые атом в мирных целях начали использовать в СССР. Первую в мире экспериментальную атомную электростанцию мощность всего 5 МВт запустили в 1954 году в городе Обнинске Калужской области. Работа первой экспериментальной АЭС показала свою перспективность и безопасность. При ее работе отсутствуют вредные выбросы в окружающую среду, в отличие от тепловых станций не требуется большого количества органического топлива. Сегодня АЭС – одни из самых экологически чистых источников энергии.

Когда построили Нововоронежскую АЭС?

АЭС1.jpg  

Строительство первого промышленного блока НВ АЭС


Впервые промышленное использование атомной энергии в Советском союзе началось на Нововоронежской АЭС. В сентябре 1964 года был запущен первый энергоблок НВАЭС с водо-водяным реактором (ВВЭР), его мощность составляла 210 МВт – почти в 40 раз больше, чем у первой экспериментальной атомной станции. Такая модель реактора считается одной из самых технически совершенных и безопасных в мире. Прототипами ВВЭР для АЭС послужили реакторы подводных лодок. Во время строительства первого энергоблока Нововоронежской АЭС не было учебных центров подготовки специалистов, способных эксплуатировать реакторы. Первых атомщиков набирали из бывших подводников.

На Нововоронежской АЭС было построено и введено в эксплуатацию пять энергоблоков, на сегодня работают три из них, ведется строительство и подготовка к пуску еще двух новых. Все энергоблоки на НВАЭС с реакторами ВВЭР.

Сколько энергии вырабатывает атомная станция?

Мощность энергоблока может составлять от нескольких единиц до нескольких тысяч МВт. Промышленные атомные электростанции очень мощные. Нововоронежская АЭС обеспечивает около 90 % потребности Воронежской области в электрической энергии и почти 90 % – потребности Нововоронежа в тепле. Суммарная мощность энергоблоков Новоронежской АЭС составляет 1800 МВт. Годового объема вырабатываемой на АЭС электроэнергии достаточно, чтобы обеспечить воронежскому авиазаводу 191 год бесперебойной работы или осветить 650 стандартных девятиэтажных домов. После запуска шестого и седьмого энергоблоков суммарная мощность Нововоронежской АЭС вырастет в 2,23 раза. Тогда годового объема энергии, вырабатываемой атомной станцией, хватит, чтобы обеспечить работу Российских железных дорог более чем на 8 месяцев.

Как устроена АЭС?

АЭС2.jpg

Энергоблок № 5 НВ АЭС

Энергия на атомной станции вырабатывается в реакторе. Топливом для него служит искусственно обогащенный уран в виде таблеток диаметром несколько миллиметров. Урановые таблетки помещают в тепловыделяющие элементы (ТВЭЛы) – это герметичные полые трубки из жаропрочного циркония. Из ТВЭЛов собирают тепловыделяющие сборки (ТВС). В активной зоне ВВЭР находится несколько сотен ТВС – в них происходят процессы деления ядер урана. Именно ТВС осуществляют передачу энергии, нагревая теплоноситель первого контура. Плотность нейтронов в реакторе и есть мощность реактора, и регулируется она количеством вводимого в активную зону поглотителя нейтронов-борсодержащих элементов (как тормоз на автомобиле). Для производства электричества на энергоблоках АЭС, как и на тепловых блоках, используется менее половины выделяемого тепла (закон физики), оставшееся тепло отработавшего в турбине пара отводится в окружающую среду. На первых блоках Новоронежской АЭС для отвода тепла использовали воду из реки Дон. Для охлаждения третьего и четвертого энергоблоков используют градирни — конструкции из железа и алюминия высотой около 91 метра и массой 920 тонн, где нагретая циркуляционная вода охлаждается потоком воздуха. Для охлаждения пятого энергоблока построен пруд-охладитель, заполненный циркуляционной водой, и его поверхность используется для отдачи тепла в окружающую среду. Эта вода не соприкасается с водой первого контура и совершенно безопасна. Пруд-охладитель настолько чистый, что в 2010 году на нем проводились всероссийские соревнования по рыбной ловле. Для охлаждения циркуляционной воды 6 и 7 блоков построены самые высокие в России градирни высотой 173 м. С самого верха градирни хорошо видны окраины г. Воронежа.

Как атомная энергия превращается в электричество?

В активной зоне ВВЭР происходят процессы деления ядер урана. При этом выделяется огромное количество энергии, которая нагревает воду (теплоноситель) первого контура до температуры около 300 °C. Вода при этом не кипит, так как находится под высоким давлением (принцип скороварки). Теплоноситель первого контура радиоактивен, поэтому не покидает пределов контура. Далее он подается в парогенераторы, где вода второго контура нагревается и превращается в пар, и уже он в турбине преобразует свою энергию в электрическую.

Как электричество попадает к нам в квартиры?

Электрический ток – упорядоченное некомпенсированное движение свободных электрически заряженных частиц-электронов под воздействием электрического поля. От атомной электростанции по проводам уходит колоссальное количество мощности напряжением 220 или 500 тыс. вольт. Такое высокое напряжение необходимо для снижения потерь при передачах на большие расстояния. Однако потребителю такое напряжение не требуется и очень опасно. Перед тем, как электрический ток попадет в дома, напряжение снижают с помощью трансформаторов до привычных 220 вольт. Вставляя в розетку вилку электроприбора, вы подключаете его к электрической сети.

Насколько безопасна атомная энергетика?

АЭС3.jpg

Пруд-охладитель НВ АЭС

При правильной эксплуатации атомная станция совершенно безопасна. Радиационный фон в зоне 30 км вокруг Новоронежской АЭС контролируют 20 автоматических постов. Они работают в режиме непрерывного измерения. За всю историю работы станции радиационный фон ни разу не превысил естественных фоновых значений. Но атомная энергетика имеет потенциальную опасность. Поэтому с каждым годом системы безопасности на АЭС становятся все более совершенными. Если для первых поколений АЭС (1,2 энергоблоки) основные системы безопасности были активными, то есть запустить их должен был человек или автоматика, то при проектировании блоков поколения 3+ (6-й и 7-й энергоблоки Нововоронежской АЭС) основную ставку делают на пассивные системы безопасности. В случае потенциально опасной ситуации они сработают сами, подчиняясь не человеку или автоматике, а законам физики. Например, при обесточивании на атомной станции защитные органы под действием силы тяжести самопроизвольно упадут в активную зону и заглушат реактор.

Персонал атомной станции регулярно тренируется справляться с разного рода ЧП. Аварийные ситуации моделируются на специальных полномасштабных тренажерах – компьютеризированных устройствах внешне не отличимых от блочных щитов управления. Оперативный персонал управляющий реактором, каждые 5 лет получает в Ростехнадзоре лицензию на право ведения технологического процесса (управления блоком АС). Процедура схожа с получением водительских прав. Специалист сдает теоретические экзамены и демонстрирует практические навыки на тренажере. Только имея лицензию и сдав экзамены на АЭС, персонал допускается к эксплуатации реактора.  

На правах рекламы.

Заметили ошибку? Выделите ее мышью и нажмите Ctrl+Enter

Общие сведения об электроэнергии

В Южной Африке самым распространенным источником энергии является уголь. Большая часть нашего угля имеет низкое качество с низкой теплотворной способностью и высокой зольностью. Большинство наших угольных месторождений, которые подходят для дешевой выработки электроэнергии, находятся в восточном и юго-восточном Гаутенге и на севере Свободного штата. В Гаутенге он обычно встречается на небольшой глубине и в толстых пластах, тогда как в Квазулу-Натале пласты глубже и тоньше, но более высокого качества.

Eskom полагается на угольные электростанции, которые производят около 90% электроэнергии.Eskom использует более 90 миллионов тонн угля в год. Добыча угля в Южной Африке относительно дешевая по сравнению с остальным миром. Эти низкие затраты оказали важное влияние на процветание и потенциал развития страны. В Европе, напротив, затраты почти в четыре раза выше.

Как производится электричество

В серии «Энергия» мы обсудили различные «ингредиенты» электричества, основы электричества как формы энергии. Но как это происходит на самом деле?

Майкл Фарадей в 1831 году обнаружил, что магниты и движущийся провод странным образом влияют друг на друга, когда они движутся близко друг к другу.Фактически, Фарадей обнаружил, что механическая энергия, используемая для перемещения магнита внутри катушки с проволокой, может быть преобразована в электрическую энергию, которая течет по проволоке. Именно это простое открытие привело к созданию современных электростанций.

На больших электростанциях огромные магниты вращаются внутри огромных катушек изолированного металлического провода. Именно здесь используются первичные источники энергии.

Существует несколько способов использования первичных источников энергии для «привода» генератора.В Южной Африке мы используем в основном тепловую энергию для производства необходимой нам электроэнергии.

А ТЭЦ

Уголь, нефть, газ и ядерное топливо могут использоваться для нагрева воды и преобразования ее в пар при высоких температурах и давлениях. Это делается в котлах или реакторах. Очень горячий пар с температурой от 500 ° C до 535 ° C выпускается и вращает большую турбину, соединенную с вращающимся магнитом, и вырабатывается электричество. Таким образом энергия топлива была преобразована в электричество.Таким образом, электростанцию ​​можно определить как преобразователь энергии.

Конечно, есть много других методов, с помощью которых можно производить электричество, например, используя природу.

Энергия ветра

Сила ветра, веками использовавшаяся для перекачивания воды и измельчения кукурузы, является наиболее многообещающей. возобновляемый источник энергии для производства электроэнергии.

Традиционная голландская ветряная мельница была модернизирована, чтобы стать самой современной аэродинамической машиной с лопастями, предназначенными для максимально эффективного улавливания ветра.Эти ветряки подключены к генераторам, вырабатывающим электричество.

Гидроэлектростанция

В горных странах гидроэлектроэнергия является важным источником. Однако в Южной Африке его наиболее важная роль — хранение «электричества» для удовлетворения неожиданных потребностей или внезапной поломки на электростанции базовой нагрузки. Эти гидрогенерирующие установки также называют электростанциями пиковой мощности.

В Южной Африке действуют две системы.Это обычные гидро- и гидроаккумуляторы. В обычной системе вода хранится за стеной плотины. Воду можно использовать для работы огромных турбин, которые соединены с генераторами для выработки электроэнергии. Электростанция обычно располагается недалеко от стены плотины.

Другая система использует гидроаккумулирующую станцию. В настоящее время это единственный практический способ хранения «электричества» в больших объемах. Идея состоит в том, чтобы просто использовать излишки электроэнергии — например, ночью или в выходные, когда мы используем меньше электроэнергии (непиковые периоды) — для перекачки воды в водохранилище на вершине горы.Эту воду также можно использовать в качестве дополнения к другим водным схемам.

В случае нехватки электроэнергии от других электростанций, верхний резервуар может быть очень быстро опустошен обратно через турбину для регенерации электроэнергии. Другими словами, двигатель, который приводил в действие насос, становится генератором, приводимым в действие турбиной.

Выработка электроэнергии этими станциями ограничена, поскольку они зависят от уровня воды в плотинах или реках, который, в свою очередь, зависит от количества осадков в зоне их водосбора.

Геотермальная энергия

Земля — ​​практически неиссякаемый резервуар естественного тепла, которое в некоторых странах достигает поверхности в виде источников, гейзеров и вулканов. Горячие источники образованы подземными водами, поднимающимися через глубокие разломы в земле. В некоторых местах подземные источники достаточно горячие, чтобы производить пар на поверхности Земли или вблизи нее, и, возможно, стоит использовать их для выработки электроэнергии, как это происходит в Исландии, Италии, Новой Зеландии и Кении.

Солнечная энергия

Солнечная энергия улавливается, концентрируется и накапливается зелеными растениями для создания топлива, но есть возможности использовать ее непосредственно для производства электроэнергии.

Успех солнечных батарей, которые преобразуют солнечный свет непосредственно в электричество, вдохновил на идею солнечной энергии как чистого и бесплатного источника электричества. Солнечные элементы обеспечивают потребности в электроэнергии для большинства спутников, находящихся на орбите Земли.

На поверхности Земли наши потребности в энергии более значительны, а атмосфера снижает яркость солнца.Для производства полезного количества электроэнергии требуются очень большие площади солнечных панелей. Стоимость инвестиций хоть и падает, но все еще очень высока. Но солнечные элементы находят множество применений в солнечных странах для питания сигнальных маяков, микроволновых ретрансляторов, водонасосных и метеорологических станций и т. Д. Также возможно ограниченное использование в домашних условиях. Eskom и другие поставщики энергии работают вместе, поставляя своим клиентам источник энергии, то есть газ для приготовления пищи и электричество через солнечные системы для освещения, радио и телевидения.

Приливная сила

Сила притяжения солнца и луны поднимает и опускает море вокруг нашего побережья дважды в день и дает приливы до 8 метров — огромный ресурс естественной энергии, если его можно использовать. Электроэнергия может вырабатываться через плотину, особый тип дамбы, построенной через устье реки, которая допускает прилив, создавая напор воды, а затем выпускает воду через турбины в плотине. Эти турбины также связаны с генератором.

Мощность волны

Океанские волны, генерируемые сочетанием ветровых воздействий и вращения Земли, представляют собой огромный резервуар естественной энергии.

Чтобы преобразовать подъем, движение волн вверх и вниз в плавное вращение генератора, требуется немалая изобретательность. Была разработана воздушная турбина с двумя наборами лопастей для вращения вала в одном направлении независимо от направления потока воздуха. Это используется в устройствах с колебательной силой волны в колонне, в которых волновое движение вверх и вниз заставляет воздух входить и выходить из большой стальной или бетонной камеры.

Генераторы

Генератор электростанции, эквивалент стержневого магнита Фарадея, представляет собой мощный электромагнит — катушку, возбуждаемую постоянным током для создания магнитного поля.Он установлен на центральном вращающемся валу и называется ротором. Вокруг ротора расположен ряд катушек, называемых статором, в которых электрическое напряжение генерируется вращающимся магнитным полем. Ротор и статор могут весить несколько сотен тонн.

Ротор, соединенный с турбиной, вращается со скоростью 3000 оборотов в минуту — 50 циклов в секунду — для выработки переменного тока с частотой 50 герц (циклов в секунду). Современные генераторы (на тепловых электростанциях) обычно производят 500-600 мегаватт энергии — этого достаточно, чтобы зажечь 5-6 миллионов 100-ваттных лампочек.Другие электростанции, как уже упоминалось, могут производить от 1 кВт до 250 МВт электроэнергии, например ветер, прилив, волна и т. д.

Как электричество попадает в ваш дом Когда вы в следующий раз включаете электрический свет или телевизор, задумайтесь на мгновение обо всей работе, которая была проделана для выработки (производства) электричества и доставки его в ваш дом.

Электростанции по всей Южной Африке соединены линиями электропередачи и башнями, называемыми опорами. Передача — это слово от глагола «передавать», что означает отправлять из одного места в другое.Линии передачи передают электричество по толстым алюминиевым и медным проводам. Сеть линий электропередачи называется Национальной энергосистемой.

Чтобы электричество передавалось безопасно и эффективно, оно должно иметь высокое напряжение (давление) и низкий ток. Это связано с тем, что при слишком высоком токе кабель будет слишком сильно нагреваться и даже расплавиться, а при слишком низком напряжении практически не будет передаваться энергия. Помните, что нам нужны вольты давления, чтобы передавать электричество на большие расстояния.Генераторы на электростанциях вырабатывают электроэнергию в 20000 вольт. Это напряжение повышается или преобразуется, прежде чем оно будет отправлено в сеть передачи на 132000, 275000, 400000 или даже 765000 вольт. Эти очень высокие напряжения необходимы для проталкивания необходимого электрического тока по проводам и снижения затрат.

Электроэнергия понижается до 11 000 вольт для местного распределения, а затем уменьшается в соответствии с потребностями — например, 240 (220) вольт для бытового использования.Электричество, поступающее в ваш дом с напряжением 240 вольт, прошло много событий. От начальной сети передачи высокого напряжения до распределительной сети более низкого напряжения. Путешествуя по земле и (возможно) под землей на многие километры, он много раз трансформировался по пути.

Вы, наверное, видели какое-то оборудование, которое выполняет эти операции в вашем районе. Они известны как подстанции, которые могут быть разных размеров — небольшие трансформаторы, установленные на деревянных опорах, более крупные трансформаторы, расположенные за высокими заборами, и огромные группы устройств странной формы на площадках, занимающих несколько гектаров.

(См .: Как вырабатывается электроэнергия)

Трансформаторы

Трансформатор — это в основном очень простое устройство. Переменный ток проходит через первичную обмотку проволоки, которая создает переменное магнитное поле в кольцевом сердечнике из мягкого железа. Это, в свою очередь, создает напряжение во вторичной катушке, из которой может сниматься выходной ток. Если вторичная катушка имеет больше витков, чем первичная, выходное напряжение выше входного.Это повышающий трансформатор. Понижающий трансформатор имеет больше витков в первичной обмотке, чем во вторичной обмотке, что снижает напряжение.

(См .: Как передается электричество)

(См .: Как распределяется электричество)

Спрос и предложение

Электроэнергия должна вырабатываться, поскольку необходимые батареи не способны хранить большие количества.

Не существует реалистичного способа хранения большого количества электроэнергии, необходимой для распределения потребителю.Таким образом, количество, подаваемое в сеть, всегда должно соответствовать тому, что покупатели получают. Это меняется не только день ото дня, но и от минуты к минуте.

По мере роста спроса необходимо задействовать больше станций. Это планируется заранее, поскольку для многих типов электростанций операции по запуску и останову являются медленными и сложными. Экономика тоже важна, потому что одни станции вырабатывают (поставляют) электричество дешевле, чем другие.

Но общее мнение всегда заключается в том, что электроснабжение должно быть стабильным и надежным — это качественный продукт.Большая часть используемого нами электрического и электронного оборудования зависит от того, чтобы напряжение и частота оставались точными и постоянными.

Выкройка

.

Измерение электроэнергии — Управление энергетической информации США (EIA)

Электроэнергия измеряется в ваттах и ​​киловаттах

Электроэнергия измеряется в единицах мощности, называемых ваттами, в честь Джеймса Ватта, изобретателя паровой машины. Ватт — это единица измерения электрической мощности, равная одному амперу при давлении в один вольт.

Один ватт — это небольшая мощность. Некоторым устройствам для работы требуется всего несколько ватт, а другим устройствам требуется большая мощность.Энергопотребление небольших устройств обычно измеряется в ваттах, а потребляемая мощность более крупных устройств — в киловаттах (кВт) или 1000 Вт.

Мощность производства электроэнергии часто измеряется в единицах, кратных киловаттам, например мегаваттам (МВт) и гигаваттам (ГВт). Один МВт равен 1000 кВт (или 1000000 Вт), а один ГВт равен 1000 МВт (или 1000000000 Вт).

Использование электроэнергии с течением времени измеряется в ватт-часах

Ватт-час (Втч) равен энергии одного ватта, постоянно подаваемой в электрическую цепь или отбираемой из нее в течение одного часа.Количество электроэнергии, производимой электростанцией или потребляемой потребителем электроэнергии, обычно измеряется в киловатт-часах (кВтч). Один кВтч — это один киловатт, который вырабатывается или потребляется в течение одного часа. Например, если вы используете лампочку мощностью 40 Вт (0,04 кВт) в течение пяти часов, вы израсходовали 200 Втч или 0,2 кВтч электроэнергии.

Коммунальные предприятия измеряют и контролируют потребление электроэнергии с помощью счетчиков

Электроэнергетические компании измеряют потребление электроэнергии своими потребителями с помощью счетчиков, которые обычно располагаются за пределами собственности потребителя, где линия электропередачи входит в собственность.Раньше все счетчики электроэнергии были механическими устройствами, которые служащему коммунального предприятия приходилось снимать вручную. Со временем стали доступны автоматизированные считывающие устройства. Эти счетчики периодически сообщают коммунальным службам об использовании электроэнергии с механических счетчиков с помощью электронного сигнала. Сейчас многие коммунальные предприятия используют электронные интеллектуальные счетчики , которые обеспечивают беспроводной доступ к данным об энергопотреблении счетчика для измерения потребления электроэнергии в режиме реального времени. Некоторые интеллектуальные счетчики могут даже измерять потребление электроэнергии отдельными устройствами и позволяют коммунальному предприятию или клиенту удаленно контролировать использование электроэнергии.

Счетчик электроэнергии механический

Источник: стоковая фотография (защищена авторским правом)

Умный счетчик электроэнергии

Источник: стоковая фотография (защищена авторским правом)

Последнее обновление: 8 января 2020 г.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *