Образ радиоактивности: Радиация или ионизирующее излучение — простым доступным языком

Содержание

Что такое радиация и радиоактивность?

? LiveJournal
  • Find more
    • Communities
    • RSS Reader
  • Shop
  • Help
Login
  • Login
  • CREATE BLOG Join
  • English (en)
    • English (en)
    • Русский (ru)
    • Українська (uk)
    • Français (fr)
    • Português (pt)
    • español (es)
    • Deutsch (de)
    • Italiano (it)

Радиоактивный человек в радиоактивном мире ⋆ Geoenergetics.ru

Радиоактивный человек в радиоактивном мире ⋆ Geoenergetics.ru

Аналитический онлайн-журнал

наведенная радиоактивность, радиоактивное заражение, дезактивация… / Хабр

Многими людьми радиация представляется, как нечто «заразное»: считается, что если что-то подверглось воздействию радиации, оно само становится ее источником. Данные представления имеют свое рациональное зерно, но способность радиации «переходить» на облучаемые вещи очень сильно преувеличена. Многие люди думают, например, что можно «схватить дозу» от деталей разобранного рентгеновского аппарата, от рентгеновских снимков и даже от врача-рентгенолога. А сколько шума поднимается, когда начинают говорить о гамма-облучении продуктов питания для их стерилизации! Мол, нам же придется есть облученную, а значит, радиоактивную пищу. Ходят и вовсе нелепые слухи о том, что в пище, разогретой в микроволновке, «остаются микроволны», о том, что под действием бактерицидных ламп становится радиоактивным воздух в комнате, где они горели.

В этой статье я расскажу, как все есть на самом деле.

Когда радиация порождает радиацию


В 1934 году Фредерик и Ирен Жолио-Кюри, изучая взаимодействие альфа-частиц с атомами разных элементов, обнаружили, что некоторые из них — алюминий, бор, магний — испускают при бомбардировке альфа-частицами некое излучение, регистрируемое счетчиком Гейгера, которое не прекращается сразу после того, как источник альфа-лучей убрали, а быстро спадает по экспоненциальной зависимости. Эксперимент в камере Вильсона показал, что это излучение представляет собой поток позитронов, немногим ранее открытых в космических лучах. Супруги Жолио-Кюри не были бы Кюри, если бы не догадались, что вновь столкнулись с явлением, которое веками пытались открыть алхимики, но так и не открыли. Альфа-частица, представляющая собой ядро гелия, сталкивалась с ядром алюминия, выбив из него нейтрон, и образовывалось ядро радиоактивного изотопа фосфора. И эту догадку удалось доказать чрезвычайно тонким и искусным химическим экспериментом, с помощью которого удалось выделить и обнаружить по радиоактивности ничтожное количество фосфора, которое невозможно было бы разглядеть ни в один микроскоп, если собрать все его атомы «в кучку». И этот фосфор еще и таял на глазах.

Последующие эксперименты открыли, что нейтроны, особенно замедленные прохождением через воду, парафин или графит, обладают еще большей способностью возбуждать ядерные реакции и активировать различные вещества. С открытием ядерных реакций деления, производящих огромное количество нейтронов, это стало с одной стороны большой проблемой — не только ядерное топливо, но и все элементы конструкции реакторов становились страшно радиоактивными. С другой же стороны таким способом стало возможно получать требуемые радионуклиды дешево и в большом количестве. Активированные нейтронным потоком термоядерного взрыва воздух и грунт являются дополнительным серьезным фактором поражения, так что «экологическая чистота» водородной бомбы — не более чем миф.

Так в каком же случае облучение вызывает ядерные реакции и приводит к появлению искусственной радиоактивности?

Как я уже сказал, особенной к этому способностью обладают нейтроны. Нетрудно догадаться, в чем причина: нейтрон легко проникает в ядро. Ему не требуется преодолевать электростатическое отталкивание, как протону или альфа-частице. Вместе с тем, нейтрон — это такой же строительный материал ядра, как и те протоны и нейтроны, точно так же способен вступать в сильное взаимодействие. Поэтому химический элемент с номером ноль и является тем самым «философским камнем» алхимиков. Вернее, их можно было бы назвать «алфизиками», если бы это слово не стало употребляться в отношении адептов эфира и торсионных полей.

Вызвать ядерное превращение может нейтрон любой энергии, вплоть до нуля. А вот другие частицы должны для этого иметь достаточно большую энергию. Про альфа-частицы (как и протоны) я уже говорил: им нужно преодолеть кулоновское отталкивание. Для легких элементов потребная энергия альфа-частицы составляет несколько мегаэлектронвольт — то есть такая, какой обладают альфа-частицы, испускаемые тяжелыми нестабильными ядрами. А более тяжелым нужны уже десятки МэВ — такую энергию можно получить только в ускорителе. К тому же с ростом массы ядра оно само все менее охотно вступает с альфа-частицей в реакцию: за железом добавление нуклонов в ядро идет с расходом, а не с выделением энергии. Если учесть еще и чрезвычайно низкую проникающую способность альфа-частиц в мишень, то становится ясно, что даже при очень мощном потоке альфа-частиц интенсивность искусственной радиоактивности получается невысокая.

А что же другие частицы? Электроны, фотоны? Им не нужно преодолевать отталкивание, но с ядром они взаимодействуют неохотно. Электрон может вступать лишь в электромагнитное и слабое взаимодействие и в большинстве случаев (за исключением ядер, нестабильных к электронному захвату) такая реакция возможна только если электрон передаст ядру значительную энергию, достаточную для отрыва нуклона от ядра. То же касается и фотона — фотоядерную реакцию может возбудить только фотон достаточно высокой энергии, но электрон гораздо быстрее, чем фотон, теряет энергию в веществе, из-за чего менее эффективен.

Спектр фотонов, излучаемых при радиоактивном распаде, заканчивается на 2,62 МэВ — это энергия квантов таллия-208, последнего члена радиоактивного ряда тория-232. И есть очень немного ядер, пороги фотоядерных реакций которых — ниже этой величины. Если точнее, то таких ядер два: дейтерий и бериллий-9


Первая реакция протекает под действием гамма-излучения свыше 2,23 МэВ, источником которого является таллий-208 (ряд тория), второй достаточно 1,76 МэВ — излучения висмута-214 (ряд урана-радия).

Данные реакции дают выход нейтронов, которые, в свою очередь, взаимодействуя с другими ядрами, рождают радиоактивные изотопы. Но сечения самих этих реакций невелики, в связи с чем заметная наведенная радиоактивность возможна только при очень большой интенсивности излучения. Для осуществления других фотоядерных реакций уже нужны гамма-кванты, энергия которых измеряется десятками и сотнями МэВ. При таких энергиях не только фотоны, но вообще все частицы — электроны и позитроны, мюоны, протоны и т.д., сталкиваясь с ядрами, вызывают ядерные реакции с достаточно большой эффективностью. Пучки таких частиц, получаемые на ускорителях, приводят к сильной активации практически любых исходно не радиоактивных мишеней.

Итак, действительно, в некоторых случаях при воздействии радиоактивных излучений на вещество образуются радиоактивные изотопы. Но обычно серьезную радиационную опасность представляет остаточная радиоактивность в двух случаях:

  • от мишеней, подвергшихся облучению нейтронами;
  • от мишеней, облученных в ускорителях.

Во всех остальных случаях, в том числе под действием рентгеновского излучения, бета- и гамма-излучения (за исключением вышеупомянутых бериллия и дейтерия) радиоактивных изотопов наведенной радиоактивности не возникает. Альфа-излучение дает слабую и обычно короткоживущую наведенную радиоактивность при облучении легких элементов.
Не вызывает появления искусственной радиоактивности ни облучение рентгеновским излучением, ни воздействие других излучений — ультрафиолетового, СВЧ и т.п. Не становятся радиоактивными продукты питания и лекарства, стерилизуемые радиоактивным излучением, семена, облучаемые для повышения всхожести и получения новых сортов, камни, облучаемые для придания им окраски (если это не облучение в нейтронных каналах ядерного реактора). Не являются радиоактивными детали рентгеновских установок, защитная одежда врача-рентгенолога и сам он!
Чтобы проиллюстрировать это, я провел небольшой опыт. Взяв напрокат в соседней лаборатории альфа-источник америций-241 активностью 1 МБк (это примерно в 100 раз больше активности источника, содержащегося в детекторе дыма HIS-07, который не составляет труда купить даже на Алиэкспрессе —
ВНИМАНИЕ! Незаконный оборот радиоактивных веществ — статья 220 УК РФ!
), я положил под него пластинку из алюминия. В результате, как и в опыте Жолио-Кюри (в котором использовался источник гораздо более мощный), я должен был получить фосфор-30, распадающийся на кремний-30 и позитрон с периодом полураспада 2,5 минут (и еще нейтрон, который тоже что-нибудь может активировать). Однако после получаса выдержки (для установления равновесия между рождением и распадом фосфора-30) я не смог задетектировать никакой заметной радиоактивности от пластинки алюминия. Я пытался для этого использовать счетчик Гейгера со слюдяным окном (позитроны детектируются им так же, как и электроны), а также сцинтилляционный детектор (который эффективно регистрирует их в линии 511 кэВ, соответствующей процессу аннигиляции). Причиной неуспеха опыта было то, что ядерные реакции под действием альфа-частиц случаются редко и даже несмотря на то, что в моем опыте алюминий подвергся воздействию как минимум полумиллиарда альфа-частиц, за это время образовалось всего несколько тысяч радиоактивных атомов, большая часть из которых за время облучения просто распалась. Возможно, мне удалось бы обнаружить позитроны в камере Вильсона благодаря практически нулевому природному фону позитронов, но ее я еще не доделал (когда сделаю — это будет хорошей темой для статьи).

Невидимая радиоактивная грязь


В большинстве случаев, за исключением вышеописанных, за наведенную радиоактивность принимают загрязнение радиоактивными изотопами на поверхности вещей и предметов. Дело в том, что при периоде полураспада в месяцы, годы и десятки лет количество вещества, испускающего пугающие уровни радиации — поистине ничтожно. Помните миллиграмм радия, который дает 8,4 Р/ч на расстояниии в сантиметр? У него период полураспада 1600 лет. А если период полураспада будет 1,6 года, а энергия гамма-квантов та же самая, что у радия? Тогда этот миллиграмм будет «светить» на том же расстоянии уже 8400 Р/ч.

Когда имеют дело с радиоактивными изотопами, в большинстве практических случаев их количество ничтожно. Это так называемые индикаторные количества, о которых судят по их радиоактивности. И в таких случаях во весь рост встает явление адсорбции — осаждения и «прилипания» вещества на поверхность раздела фаз.

Радиохимикам все время приходится воевать с адсорбцией. Из-за нее можно полностью потерять радиоактивный изотоп во время операций с ним просто из-за того, что весь он осел на стенках пробирки или стаканчика. Приходится подбирать состав «фонового» раствора, но часть изотопа все равно теряется, и увы, зачастую неизвестная. Приходится делать параллельный опыт в абсолютно тех же условиях (вплоть до пробирок из одной коробки) либо добавлять в раствор метку выхода — другой радиоактивный изотоп того же химического элемента. А можно сесть в калошу и другим способом: изотоп, раствор которого ранее содержался в стакане, осел на стенку и, несмотря на последующее мытье и ополаскивание сначала кислотой, потом дистиллированной водой, попал в следующую пробу. Стакан же при этом казался абсолютно, безукоризненно чистым.

Такой же безукоризненно чистой может казаться любая вещь, но тем не менее, имеющееся на ее поверхности (а также внутри сообщающихся с ней пор, щелей и т.п.) излучающую грязь. И не только вещь: в зоне радиационного поражения радиоактивными могут стать кожа и волосы пострадавших людей, шерсть животных. И далеко не во всех случаях эта активность легко удаляется. В большинстве случаев дезактивация сильно загрязненных радионуклидами объектов сложна, а во многих случаях она становится безуспешной.

В отличие от наведенной радиоактивности, которая обычно прочно закреплена на своем носителе, загрязнение радионуклидами находится на его поверхности и поэтому легко переходит на другие объекты, на руки людей и затем попадает в их организм, подвергая его внутреннему облучению.

Дезактивация — методы и средства


Простейшим способом дезактивации является обычное мытье с мылом или другими поверхностно-активными веществами. Это метод, который подходит почти для всего — с мылом помыть можно и асфальт, и стены дома, и живого человека, и редкую картину или скрипку. В последнем случае это делается осторожно, протирая поверхность смоченным в мыльном растворе отжатым тканевым тампоном и немедленно протирая таким же тампоном с чистой водой, а затем удаляя остатки воды фильтровальной бумагой. Таким образом излучение скрипки, лежавшей в самые горячие дни Чернобыльской катастрофы рядом с открытым окном киевского дома и «светившей» около 1 мР/ч «условно» вплотную, удалось снизить до вполне приемлемого, и спасти тем самым инструмент. Существуют специализированные средства для дезактивации, содержащие помимо ПАВ также комплексообразователи (такие, как ЭДТА), ионообменные смолы, цеолиты и другие сорбенты. Комплексообразователи способствуют переводу радионуклидов, образующих катионы, в раствор, а ионообменные компоненты и сорбенты наоборот, удаляют их из раствора, переводя в связанную форму, но уже не на дезактивированной поверхности. Так, хорошо известно (и активно применяется у нас в лаборатории) новосибирское средство для дезактивации «Защита», работающее по такому принципу.

Но такого средства нередко недостаточно: радионуклиды оказываются прочно связаны с поверхностью, находятся глубоко в порах и микротрещинах. В таких случаях приходится использовать гораздо более жесткие способы — обрабатывать поверхности кислотами, растворяющими поверхностный слой металла и корку ржавчины на нем, и способствующих десорбции радиоактивных загрязнений. Применяют также сильные окислители, разрушающие органические загрязнения на поверхности, на которые также налипает радиоактивная пыль. На АЭС для дезактивации оборудования часто используют двухванный способ дезактивации, когда сначала обрабатывают детали щелочным раствором перманганата калия, а затем кислотой.
Для металлических поверхностей эффективным способом дезактивации является электрохимический метод. Цель примерно та же — удалить поверхностный слой металла, слои коррозии, пропитанные радионуклидами. Но резко снижается количество жидких радиоактивных отходов, так как можно пользоваться минимальным количеством электролита. Это так на называемая полусухая электролитическая ванна — на дезактивируемую поверхность накладывается ткань или войлок, пропитанные электролитом и сверху на нее кладется второй электрод). Дезактивируемая деталь или поверхность является анодом, а в качестве катода используют обычно свинцовый лист, легко деформируемый для плотного облегания дезактивируемой поверхности.

Для дезактивации трудноудаляемых радиоактивных загрязнений, как, например, с вертолетов, летавших над аварийным чернобыльским реактором, использовали и пескоструйную обработку. Впрочем, она порождает огромное количество радиоактивной пыли, сильно повреждает дезактивируемую поверхность и в целом имеет невысокую эффективность.

Если вдруг, не дай бог, вы попадете в зону радиоактивного заражения и вам потребуется что-либо срочно дезактивировать, то рекомендую средство для мытья посуды («Фейри» и т.п.) или любой стиральный порошок с добавлением щавелевой кислоты. Также можно использовать такие бытовые чистящие средства для сантехники, как Cif, в них уже есть кислота.
От наведенной радиации дезактивация обычно не помогает. Ведь ее источник находится в глубине излучающего объекта — нейтроны обладают очень высокой проникающей способностью. Но далеко не всегда невозможность дезактивации означает, что источник излучения с ней связан.

* * *


Наведенная радиация — реальное явление, но оно так обросло мифами, что само стало своего рода мифом. В реальности образование наведенной радиоактивности нужно учитывать в ряде случаев, но при обычном обращении с радиоактивными веществами и другими источниками ионизирующего излучения бояться наведенной радиации не нужно. А вот загрязнение радионуклидами — штука не только более реальная, но и более опасная.

На КДПВ — ЗГРЛС «Дуга». Автор фотографии — Mike Deere.

Всё о радиации. Как распознать и как бороться с радиацией!

Что такое радиация и радиоактивность?

Радиоактивностью называют неустойчивость ядер некоторых атомов, которая проявляется в их способности к самопроизвольному превращению (по научному — распаду), что сопровождается выходом ионизирующего излучения (радиации). Энергия такого излучения достаточно велика,  поэтому она способна воздействовать на вещество, создавая новые ионы разных знаков. Вызывать радиацию с помощью химических реакций нельзя, это полностью физический процесс.

Различают несколько видов радиации:

  • Альфа-частицы — это относительно тяжелые частицы, заряженные положительно, представляют собой ядра гелия.
  • Бета-частицы — обычные электроны.
  • Гамма-излучение — имеет ту же природу, что и видимый свет, однако гораздо большую проникающую способность.
  • Нейтроны — это электрически нейтральные частицы, возникающие в основном рядом с работающим атомным реактором, доступ туда должен быть ограничен.
  • Рентгеновские лучи — похожи на гамма-излучение, но имеют меньшую энергию. Кстати, Солнце — один из естественных источников таких лучей, но защиту от солнечной радиации обеспечивает атмосфера Земли.

Виды радиационного излучения.
Виды радиационного излучения.

Наиболее опасно для человека Альфа, Бета и Гамма излучение, которое может привести к серьезным заболеваниям, генетическим нарушения и даже смерти. Степень влияния радиации на здоровье человека зависит от вида излучения, времени и частоты. Таким образом, последствия радиации, которые могут привести к фатальным случаям, бывают как при однократном пребывании у сильнейшего источника излучения (естественного или искусственного), так и при хранении слаборадиоактивных предметов у себя дома (антиквариата, обработанных радиацией драгоценных камней, изделий из радиоактивного пластика). Заряженные частицы очень активны и сильно взаимодействуют с веществом, поэтому даже одной альфа-частицы может хватить, чтобы уничтожить живой организм или повредить огромное количество клеток. Впрочем, по этой же причине достаточным средством защиты от радиации данного типа является любой слой твердого или жидкого вещества, например, обычная одежда.

По мнению специалистов www.dozimetr.biz, ультрафиолетовое излучение или излучение лазеров нельзя считать радиоактивным.  Чем же отличается радиация и радиоактивность?

Источники радиации — ядерно-технические установки (ускорители частиц, реакторы, рентгеновское оборудование) и радиоактивные вещества. Они могут существовать значительное время, никак не проявляя себя, и Вы можете даже не подозревать, что находитесь рядом с предметом сильнейшей радиоактивности.

Единицы измерения радиоактивности

Радиоактивность измеряется в Беккерелях (БК), что соответствует одному распаду в секунду. Содержание радиоактивности в веществе также часто оценивают на единицу веса — Бк/кг, или объема — Бк/куб.м. Иногда встречается такая единица как Кюри (Ки). Это огромная величина, равная 37 миллиардам Бк. При распаде вещества источник испускает ионизирующее излучение, мерой которого является экспозиционная доза. Её измеряют в Рентгенах (Р). 1 Рентген величина достаточно большая, поэтому на практике используют миллионную (мкР) или тысячную (мР) долю Рентгена.

Бытовые дозиметры измеряют ионизацию за определенное время, то есть не саму экспозиционную дозу, а её мощность. Единица измерения — микроРентген в час. Именно этот показатель наиболее важен для человека, так как позволяет оценить опасность того или иного источника радиации.

Естественной защитой от солнечной и космической радиации является атмосфера Земли.
Естественной защитой от солнечной и космической радиации является атмосфера Земли.

Радиация и здоровье человека

Воздействие радиации на организм человека называют облучением. Во время этого процесса энергия радиация передается клеткам, разрушая их. Облучение может вызывать всевозможные заболевания: инфекционные осложнения, нарушения обмена веществ, злокачественные опухоли и лейкоз, бесплодие, катаракту и многое другое. Особенно остро радиация воздействует на делящиеся клетки, поэтому она особенно опасна для детей.

Организм реагирует на саму радиацию, а не на её источник. Радиоактивные вещества могут проникать в организм через кишечник (с пищей и водой), через лёгкие (при дыхании) и даже через кожу при медицинской диагностике радиоизотопами. В этом случае имеет место внутреннее облучение. Кроме того, значительное влияние радиации на организм человека оказывает внешнее облучение, т.е. источник радиации находится вне тела. Наиболее опасно, безусловно, внутреннее облучение.

Как вывести радиацию из организма? Этот вопрос, безусловно, волнует многих. К сожалению, особо эффективных и быстрых способов вывода радионуклидов из организма человека не существет. Некоторые продукты питания и витамины помогают очистить организм от небольших доз радиации. Но если облучение серьезное, то остается только надеяться на чудо. Поэтому лучше не рисковать. И если существует даже малейшая опасность подвергнуться радиации, необходимо со всей быстротой уносить ноги из опасного места и вызывать специалистов.

Является ли компьютер источником радиации?

Этот вопрос, в век распространения компьютерной техники, волнует многих. Единственной частью компьютера, которая теоретически может быть радиоактивной является монитор, да и то, только электролучевой. Современные дисплеи, жидкокристаллические и плазменные, радиоактивными свойствами не обладают.

ЭЛТ мониторы, как и телевизоры, являются слабым источником излучения рентгеновского типа. Оно возникает на внутренней поверхности стекла экрана, однако благодаря значительной толщине этого же стекла, оно и поглощает большую часть излучения. До настоящего времени не обнаружено никакого влияния ЭЛТ мониторов на здоровье. Впрочем, при повсеместном применении жидкокристаллических дисплеев этот вопрос теряет былую актуальность.

Может ли человек стать источником радиации?

Радиация, воздействуя на организм, не образует в нем радиоактивных веществ, т.е. человек не превращается сам в источник радиации. Кстати, рентгеновские снимки, вопреки распространенному мнению, также безопасны для здоровья. Таким образом, в отличие от болезни, лучевое поражение от человека к человеку передаваться не может, зато радиоактивные предметы, несущие в себя заряд, могут быть опасны.

Измерение уровня радиации

Измерить уровень радиации можно с помощью дозиметра. Бытовые приборы просто не заменимы для тех, кто хочет максимально обезопасить себя от смертельно опасного влияния радиации. Основное предназначение бытового дозиметра — измерение мощности дозы радиации в том месте, где находится человек, обследование определенных предметов (грузов, стройматериалов, денег, продуктов питания, детских игрушек и т.п.) Купить прибор, измеряющий радиацию, просто необходимо тем, кто часто бывает в районах радиационного загрязнения, вызванных аварией на Чернобыльской АЭС (а такие очаги присутствуют практически во всех областях европейской территории России). Поможет дозиметр и тем, кто бывает в незнакомой местности, удаленной от цивилизации: в походе, собирая грибы и ягоды, на охоте. Обязательно необходимо обследовать на радиационную безопасность место предполагаемого строительства (или покупки) дома, дачи, огорода или земельного участка, иначе вместо пользы подобная покупка принесет только смертельно опасные заболевания.

Очистить продукты, землю или предметы от радиации практически невозможно, поэтому единственный способ обезопасить себя и свою семью — держаться от них подальше. А именно бытовой дозиметр поможет выявить потенциально опасные источники.

Нормы радиоактивности

В отношении радиоактивность существует большое число норм, т.е. стараются нормировать практически все. Другое дело, что нечистые на руку продавцы, в погоне за большой прибылью, не соблюдают, а иногда и откровенно нарушают нормы, установленные законодательством. Основные нормы, установленные в России, прописаны в Федеральном законе №3-ФЗ от 05.12.1996 г «О радиационной безопасности населения» и в Санитарных правилах 2.6.1.1292-03 «Нормы радиационной безопасности».

Для вдыхаемого воздуха, воды и продуктов питание регламентировано содержание как техногенных (полученных в результате деятельности человека), так и естественных радиоактивных веществ, которые не должны превышать нормы, установленные СанПиН 2.3.2.560-96.

В строительных материалах нормируется содержания радиоактивных веществ семейства тория и урана, а также калия-40, удельная эффективная активность их рассчитывается по специальным формулам. Требования к строительным материалам также указаны в ГОСТ.

В помещениях регламентируется суммарное содержание торона и радона в воздухе: для новых зданий оно должно быть не больше 100 Бк (100 Бк/м3), а для уже эксплуатируемых — менее 200 Бк/м3. В Москве применяются также дополнительные нормы МГСН2.02-97, где регламентируются максимально допустимые уровни ионизирующего излучения и содержание радона на участках застройки.

Для медицинской диагностике предельные дозовые значения не обозначены, однако выдвигаются требований минимально достаточных уровней облучения, чтобы получить качественную диагностическую информацию.

В компьютерной технике регламентируется предельный уровень излучения для электро-лучевых (ЭЛТ) мониторов. Мощность дозы рентгеновского изучения на любой точке на расстоянии 5 см от видеомонитора или персонального компьютера не должна превышать 100 мкР в час.

Достоверно проверить уровень радиационной безопасности можно только с помощью персонального бытового дозиметра.
Достоверно проверить уровень радиационной безопасности можно только с помощью персонального бытового дозиметра.

Проверить же соблюдаются ли производителями установленные законодательно нормы можно только самостоятельно, используя миниатюрный бытовой дозиметр. Пользоваться им очень просто, достаточно нажать одну кнопку и сверить показания на жидкокристаллическом дисплее прибора с рекомендованными. Если норма значительно превышена, значит данный предмет представляет собой угрозу жизни и здоровья, и о нём следует сообщить в МЧС, чтобы он был уничтожен. Защитите себя и свою семью от радиации!

Солнечная, Космическая, Земная и Бытовая, Естественный Фон, Допустимая и Смертельная Доза, Воздействие на Организм Человека

29.04.2019

Под радиоактивностью подразумевается шаткость ядер в некоторых атомах. Она может проявляться в их восприимчивости к самопроизвольным превращениям (говоря научным термином — распадам), сопровождаемым проистеканием ионизирующих излучений, другими словами — радиацией. Энергетическая составляющая таких излучений довольно-таки значительна,  вследствие этого она может влиять на вещества, с процессом создания новых ионов различных знаков. Вызывание радиации при помощи химической реакции невозможно, потому что это является целиком физическим процессом.

Символ радиационной опасностиСимвол радиационной опасности

Радиацию различают в виде:

  • Альфа-частиц — сравнительно тяжелых частиц, заряженных положительно, представляющих собой ядра гелия;
  • Бета-частиц — обычных электронов;
  • Гамма-излучений — обладающих той же природой, что и свет, но с намного большей проникающей способностью;
  • Нейтронов — таких электрически нейтральных частиц, возникающих главным образом поблизости с работающими атомными реакторами, подступы к которым должны быть категорически ограничены;
  • Рентгеновских лучей — похожих с гамма-излучением, но обладающих меньшей энергией.

Следует отметить, что Солнце является одним из природных источников такого излучения, но земная атмосфера защищает планету от такого вида радиации.

Разновидности радиационного излучения

Самыми опасными для людей являются альфа-, бета- и гамма-излучения, которые могут приводить к нешуточным недомоганиям, включая генетические нарушения, а также смерть. Уровень воздействия радиации на самочувствие людей находится в полной зависимости от разновидности излучения, его продолжительности, а также частоты. Из этого следует, что последствия от радиации могут быть как при разовом взаимодействии с источником, так и про многократном.

Так, например, если хранить слаборадиоактивные предметы в домашней обстановке, в частности антиквариат, обработанные радиацией драгоценные камни либо изделия из радиоактивного пластика, то воздействия не избежать.

Ворон на знакеВорон на знаке

Единицы измерения радиоактивности

Радиоактивность измеряют в Беккерелях (БК), что соответствует одному распаду в секунду. Уровень содержания радиоактивности в веществах также часто оценивают единицами веса — Бк/кг, либо объемами — Бк/куб. м³. Порой можно повстречать такую единицу — Кюри (Ки). Она является выражением огромной величины, равной 37 биллионам Бк. В процессе распада веществ источники испускают ионизирующие излучения, мерой которых являются экспозиционные дозы. Они измеряются Рентгенами (Р). Один Рентген является величиной довольно-таки значительный, отчего на практике обычно используется миллионная (мкР) или тысячная (мР) доля Рентгена.

Бытовыми дозиметрами измеряю процессы ионизации в течение определенного времени. Имеется в виду не сама экспозиционная доза, а лишь уровень ее мощности. Единицей измерения является микрорентген/час. Собственно этот показатель и считается самым важным для людей, благодаря ему можно произвести оценку опасности тех или иных источников радиации.

Влияние радиации на состояние здоровья людей

Влияние радиации на людской организм называется облучением. В процессе этого воздействия радиоактивная энергия внедряется в клетки, при этом разрушая их. При облучении могут проявляться самые разнообразные болезни, типа инфекционных осложнений, нарушений обмена веществ, злокачественных опухолей и лейкоза, бесплодия, катаракты и многого другого. В особенности необычайно остро радиация может воздействовать на процесс деления клеток, из-за этого она представляет чрезвычайную опасность для детского организма.

Людской организм может реагировать не столько на саму радиацию, как на ее источники. Проникновение в организм радиоактивных веществ может происходить разными путями. Например, появление ее в кишечнике может происходить при приеме пищи или воды, в легких — в  процессе дыхания, а на коже или через нее при проведении медицинской диагностики с помощью радиоизотопов. Это будет так называемым внутренним облучением.

Военные на ЧАЭСВоенные на ЧАЭС

Как вывести радиацию из организма? Таким вопросом, несомненно, задаются многие люди. Так, например, известно, что при употреблении отдельных продуктов питания, а также витаминов можно оказать помощь организму в его очистке от незначительных радиоактивных доз. Хотя во времена Чернобыльской катастрофы ходили слухи, что представители КГБ знали, как вывести радиацию, находясь в зоне, и выходили из нее без вреда для организма. Домыслы  опирались на то, что они якобы принимали внутрь какой-то особый совершенно секретный активированный уголь или какой-то аналог.

Компьютеры – это тоже источники радиации?

Такие вопросы в эру компьютерных технологий и техники беспокоят многих людей. Единственными элементами в компьютерах, которые в теории могут быть радиоактивными, считаются только мониторы, в особенности электролучевые. В современных дисплеях, жидкокристаллических и плазменных, радиоактивных свойств не наблюдается.

В ЭЛТ-мониторах, как и в телевизорах, наблюдаются слабые источники излучения, но это рентгеновские типы излучений. Они возникают на внутренних поверхностях стекол экранов. Существенной толщиной этих же стекол, и поглощается большая их часть. В настоящее время не удалось обнаружить какое-либо негативное влияние ЭЛТ-мониторов на состояние здоровья, а в случае повального использования жидкокристаллических мониторов такие вопросы и вовсе потеряют свою актуальность.

БананыБананы

Могут ли люди быть источниками радиации?

При воздействии радиации на людские организмы, в последних не образуются радиоактивные вещества, то есть люди не превращаются сами в источники радиации. Между прочим, производство рентгеновских снимков, наперекор широко распространенным представлениям, тоже является безопасными для людей. Следовательно, в противоположность заболеваниям, лучевые поражения от одного человека к другому передаваться не могут, тем не менее, присутствие радиоактивных предметов, несущих в себе заряды, может представлять опасность.

Как измеряются уровни радиации?

В основном уровни радиации измеряются при помощи дозиметров. Наличие таких бытовых приборов незаменимо для тех, кто намеревается предельно обезопаситься от вредоносного, да и вообще порой смертельного радиоактивного воздействия. Основным предназначением бытовых дозиметров является замер доз радиации в тех местах, где находятся люди, а также обследование каких-либо объектов или предметов. Это могут быть грузы, стройматериалы, деньги, продукты питания, детские игрушки и пр. Приобретают приборы, измеряющие уровни радиации, главным образом люди, которые нередко бывают в районах с радиоактивным загрязнением, в частности вызванным аварией на ЧАЭС. Следует отметить, что такие очаги существуют почти в большинстве областей европейской части России.

Помогают дозиметры и тем, кто бывают на незнакомых территориях, удаленных от цивилизаций, например в походах, при сборе грибов и ягод, а также на охоте. Непременным условием, особенно в последнее время, считается обследование на наличие радиационной безопасности мест, предполагаемых под строительство или приобретения домов, дач, огородов или земельных участков, в противном случае, подобные приобретения могут принести лишь смертельную опасность или тяжелые заболевания.

ДозиметрДозиметр

Очистка продуктов питания, земли или предметов от радиации почти невозможна, как заявляют современные ученные. Хотя имеются, конечно же, неподтвержденные данные, что установки для такой очистки существуют еще давно, как минимум со времен Чернобыля, но они по каким-то неведомым причинам засекречены. Таким образом, единственным доступным способом по защите себя и своей семьи остается держаться от всего этого как можно дальше. С помощью бытовых дозиметров как раз таки можно заниматься выявлением потенциально опасных источников.

Какие существуют мифы о радиации

В умах людей на сегодняшний день существуют разные мнения о радиации: использование йода или свинца для защиты от излучений, зеленые свечения радиоактивных веществ и другие мифы. Можно ли развенчать такое околонаучное мифотворчество и побороть общепринятые заблуждения? Что же говорит наука?

Радиацию «создали» люди

Ложь

Сама по себе радиация естественного происхождения. В частности, в результате солнечного излучения также происходит зарождение радиационного фона. На юге, где, как известно, имеется весьма яркое и жаркое солнце, естественный радиационный фон довольно-таки высокий. Конечно, он не губительный для людей, однако он более высокий, чем в странах северного полушария. Кроме того, имеется и космическая радиация, которая из открытого космоса доходит до нашей планеты и встречается с атмосферой.

Костюмы радиозащитыКостюмы радиозащиты

Наличие свинцовых стен защитит от радиации

Частичная правда

Объясняя эту точку зрения, желательно разобраться с некоторыми моментами. Во-первых, имеются несколько разновидностей радиации, которые в свою очередь связанны с самыми разнообразными типами распространяющихся частиц. Например, имеющиеся альфа-излучения весьма эффективно ионизируют все вокруг. Однако их может задержать обыкновенная верхняя одежда. Таким образом, если перед людьми находятся источники альфа-излучений, а они при этом одеты, да еще и в очках, то ничего страшного им не угрожает.

У бета-излучений ионизирующая восприимчивость ниже, однако это уже более глубоко проникающая радиация. Но и она может быть остановлена, к примеру, при помощи небольшого слоя алюминиевой фольги.

Саркофаг на ЧАЭССаркофаг на ЧАЭС

Ну и гамма-излучения, которые обладают, если сравнивать с одинаковой интенсивностью, наименьшей ионизирующей способностью. При этом они обладают наилучшей проникающей характеристикой, вследствие этого и считаются наиболее опасными. Таким образом, в каких бы защитных костюмах люди ни были перед гамма-источниками, они все равно бессильны и в любом случае получат свою дозу радиации.

Собственно предохранение от гамма-излучений в большинстве своем ассоциируется у людей с наличием свинцовых погребов, бункеров и прочими подобными атрибутами. Конечно, одинаковая толщина свинцового слоя будет куда более эффективной, чем такие же слои, к примеру, бетонных или деревянных укрытий. Свинец не является волшебным материалом, хотя и обладает важнейшим параметром — высокой плотностью. Собственно по причине высокой плотности материалы из свинца в действительности нередко употреблялись в защитных сооружениях середины XX столетия, в самом разгаре ядерной гонки вооружений. При всем при том свинец имеет определенную токсичность, отчего на сегодняшний день для тех же целей люди предпочитают пользоваться, к примеру, более толстыми слоями бетона.

Употребление йода может защитить от радиационного заражения

Ложь

Употребление йода либо каких-нибудь его соединений абсолютно не противостоит негативному воздействию радиации. Так почему же медиками рекомендуется принятие йода, когда происходят техногенные катастрофы, при которых происходит выброс радионуклидов в атмосферу? А все потому, что когда в атмосфере или в воде обнаруживается присутствие радиоактивного йода-131, он весьма стремительно проникает в организмы людей. После чего происходит его накопление в щитовидных железах, с резким повышением рисков по развитию рака и прочих болезней, связанных с этими «нежными» органами. Заблаговременно «наполнив по максимуму» йодные депо в щитовидных железах, можно снизить захват радиоактивного йода и, следовательно, предохранить ткани от дальнейших накоплений радиации.

Люди в защитных костюмахЛюди в защитных костюмах

Все радиоактивные вещества обязательно светятся

Частичная правда

Все, что так или иначе связано с радиоактивным свечением специалисты называют радиолюминесценцией, и это не считается каким-то чрезвычайно распространенным явлением. Причем, оно по обыкновению вызывается не свечением самих радиоактивных материалов, а происходит при взаимодействии излучаемой радиации с окружающими материалами.

Еще в 1920–1930-х годах, на пике публичной заинтересованности в радиоактивных материалах, в различные бытовые приборы, лекарства и во многое другое, в том числе и в краску для стрелок в часах и окраски циферблата добавляли немного радия. В основном эту краску составляла основа сульфида цинка, смешанная с медью. Примеси радия испускали радиоактивное излучение, а при взаимодействии с краской светились зеленым.

Радиационная опасностьРадиационная опасность

Радиационное облучение обязательно приведет к мутациям

Правда

Действительно процесс радиоактивного излучения может привести к самым разнообразным повреждениям в ДНК-спиралях. Чтобы восстановить целостную систему генов, в процессе репарации поврежденные участки заполняются с помощью случайных нуклеотидов. Это является одним из вариантов возникновения нового вида мутации.

При всем при том желательно не забывать, что люди довольно-таки неплохо защищены от фоновых радиоактивных излучений. Присутствие фоновой радиации необязательно может привести к повреждению ДНК-спирали. Иногда, если у одной из двух цепей произошло повреждение, то она всегда может восстановиться, используя резервную вторую цепь.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Богуславский Сергей

Автор статьи:

Богуславский Сергей

Я бывший военнослужащий, офицер, и военная тематика мне близка, я в ней легко ориентируюсь.

Свежие публикации автора:

С друзьями поделились:

Как действует радиация на человека

Скажите слово «радиация» трем разным людям, и вы, вероятно, получите три разных реакции. Ваша тетя не скажет как действует радиация, но может рассказать вам как радиация излечила ее рак. Ваш сосед может вспомнить, как его учили в школе действиям во время ядерного взрыва. А ваш друг любитель комиксов объяснит, как гамма-лучи превратили Брюса Баннера в Халка.

Радиация в различных формах все время окружает нас. Иногда она опасна, иногда — нет. Она бывает естественной и искусственной. Наши тела ежедневно подвергаются воздействию естественного излучения — от почвенных и подземных газов до излучения, идущего от солнца и из космического пространства.

Мы также подвергаемся радиации от создаваемых человеком приборов — медицинских процедур, телевизоров, сотовых телефонов и микроволновых печей. Опасность радиационного излучения зависит от его силы, вида и длительности воздействия.

Что такое радиация

Большинство людей скажут вам, что радиацию обнаружила Марии Кюри вместе со своим мужем Пьером. И это так — ну, или почти так. Супруги Кюри открыли радиоактивность в 1898 году, что принесло им Нобелевскую премию. Однако, за три года до них в 1895 году ученый по имени Вильгельм Рентген впервые обнаружил рентгеновские лучи и феномен радиоактивности (термин позже был придуман Кюри, на основе латинского слова «луч»).

Вскоре после открытия Рентгена французский ученый по имени Анри Беккерель попытался выяснить, откуда взялись рентгеновские лучи, и обнаружил мощное излучение урана. Мария Кюри писала свою докторскую диссертацию, основываясь на исследованиях Беккереля, что и привело к открытию излучения радия.

Радиация — это энергия, которая распространяется в виде волн (электромагнитное излучение) или высокоскоростных частиц (собственно радиация). Причина излучения — в распаде неустойчивого (радиоактивного) атома.

Что касается электромагнитного излучения, то оно не имеет массы и распространяется волнами. ЭМ-излучение может варьироваться от очень низких до крайне высоких энергий, и мы называем этот диапазон электромагнитным спектром. В пределах ЭМ-спектра существуют два типа радиации — ионизирующая и неионизирующая.

Немного трудновато? Не волнуйтесь, мы подробно объясним это далее.

К сожалению, то самое, что дало Марии Кюри вечную жизнь в науке — в конечном счёте её убило. В конце 1890-х годов Мария и ее муж Пьер начали страдать различными недугами. Мария перенесла несколько катаракт (теперь известный побочный эффект радиации) и в конечном итоге умерла от лейкемии, вызванной облучением ее костного мозга.

Итак, вот как действует радиация на нас.

Электромагнитный спектр

Электромагнитное излучение представляет собой поток фотонов, движущихся волнообразно. Но что такое фотон? Это пучок энергии, находящийся в постоянном движении. На практике, количество энергии, которую несет фотон, заставляет его иногда вести себя как волна, а иногда — как частица. За эту двойственную природу ученые называют его волной-частицей. Фотоны с низкой энергией (например, радио) ведут себя как волны, а фотоны высоких энергий (например, рентгеновские лучи) ведут себя, скорее, как частицы.

ЭМ-излучение может проходить через пустоту. Это отличает его от других типов волн, таких как звук, которым требуется среда для перемещения. Все формы электромагнитного излучения располагаются в электромагнитном спектре. Чем выше энергия, тем сильнее и, следовательно, опаснее излучение. Единственное различие между радиоволнами и гамма-лучами — это уровень энергии фотонов. Ниже представлен обзор электромагнитного спектра.

Радио

Радиоволны — самые длинные волны электромагнитного спектра (до длины футбольного поля). Они невидимы для наших глаз. Они доставляют музыку в наши радиоприемники, звук и картинку в телевизоры и передают сигналы на наши мобильные телефоны. Волны сотового телефона самые короткие из радиоволн, но длиннее, чем микроволны.

Микроволны

Также невидимы. Мы используем микроволны, чтобы быстро разогреть пищу. Телекоммуникационные спутники с помощью микроволн передают голос на телефоны. Для микроволновой энергии туман, облака или дым не являются препятствием. Потому она так удобна для передачи информации. Некоторые микроволны используются в радарах, например, доплеровском радаре, который используют метеорологи, чтобы вы получали прогнозы погоды. Вся Вселенная наполнена слабым микроволновым фоновым излучением, которое ученые связывают с Теорией Большого Взрыва.

Инфракрасное излучение

Инфракрасная область располагается между видимой и невидимой частями ЭМ спектра. Ваш пульт дистанционного управления переключает каналы с помощью инфракрасных волн. Каждый день мы чувствуем инфракрасное излучение как солнечное тепло. Инфракрасная фотография может показывать разницу температур. Змеи способны улавливать инфракрасное излучение, и именно так они находят теплокровную добычу в полной темноте.

Видимое излучение

Это единственная часть электромагнитного спектра, которую мы можем видеть. Мы видим разные длины волн в этой полосе спектра как цвета радуги. Например, солнце является естественным источником видимых волн. Когда мы смотрим на объект, наши глаза видят цвет отраженного света, а все остальные цвета поглощаются объектом.

Ультрафиолет

Ультрафиолетовые лучи (УФ) — вот что украшает загаром нашу кожу. Люди не могут видеть УФ-лучи, но некоторые насекомые могут. Озоновый слой нашей атмосферы задерживает большую часть ультрафиолетового излучения. Однако, поскольку наш озоновый слой истощается из-за использования нами хлорфторуглеродов в аэрозолях, уровень облучения Земли ультрафиолетом неуклонно растёт. Это может привести к последствиям для здоровья, таким как рак кожи.

Рентгеновские лучи

Рентгеновские лучи — световые волны с очень высокой энергией. Больше всего мы знакомы с их использованием в медицине, но космос также пронизан естественным рентгеновским излучением. Не стоит волноваться, рентгеновские лучи не могут проникнуть из космоса на поверхность Земли.

Гамма-лучи

Гамма-лучи обладают наибольшей энергией и самой короткой длиной волны. Ядерные взрывы и атомы радиоактивных минералов генерируют эти лучи. Гамма-лучи могут убивать живые клетки, и врачи иногда используют их для уничтожения раковых клеток. В глубоком космосе вспышки гамма-излучения происходят ежедневно, но их происхождение по-прежнему остается загадкой.

рентген для примерки обувирентген для примерки обуви

Рентген для примерки обуви

Сегодня мы знаем, что чрезмерное облучение рентгеновскими лучами опасно, и операторы рентгеновских кабинетов вместе с пациентами одевают защитное снаряжение.

Однако, с 1930-х по 1950-е годы, продавцы в обувных магазинах использовали рентгеновский аппарат для примерки обуви. Хотя нет информации о пострадавших покупателях, известно о случаях заболеваний продавцов.

Одна модельерша, участвовавшая в показах модной обуви, получила такую дозу рентгеновского облучения, что ей пришлось ампутировать ногу.

Неионизирующая радиация

Существует два вида радиационного излучения: неионизирующее и ионизирующее. В электромагнитном спектре их разделяет граница между инфракрасным и ультрафиолетовым излучениями. Известны три основных типа ионизирующего излучения: альфа-частицы, бета-частицы и гамма-лучи. Позже в этой статье мы обсудим эти типы излучения более подробно.

Неионизирующее излучение является относительно низкоэнергетическим излучением, которое не обладает достаточной энергией для ионизации атомов или молекул. Оно занимает нижний конец электромагнитного спектра. Источниками неионизирующего излучения являются линии электропередач, микроволны, радиоволны, инфракрасное излучение, видимый свет и лазеры. Хотя это излучение менее опасно, чем ионизирующее излучение, всё же чрезмерная доза неионизирующего излучения может вызвать проблемы со здоровьем. Давайте рассмотрим некоторые примеры неионизирующего излучения и связанные с ними проблемы безопасности.

Сверхнизкочастотное излучение (СНЧ)

Это излучение, создаваемое такими объектами, как линии электропередачи или электропроводка. Ведутся споры о влиянии на здоровье магнитного поля вблизи линий электропередач. Очевидно, что СНЧ излучение влияет на нас каждый день, но степень его опасности для человека зависит от мощности источника СНЧ, а также от расстояния и продолжительности воздействия. Учёные исследуют влияние СНЧ радиации на раковые заболевания и проблемы с деторождением. Пока не найдено прямой связи между СНЧ излучением и болезнью, но исследования обнаружили между ними некоторую зависимость.

Радиочастотное излучение (РИ) и микроволновое излучение (СВЧ)

В основном исходит от радиостанций, телевизоров, микроволновых печей и сотовых телефонов. Как РИ, так и СВЧ волны нарушают работу кардиостимуляторов, слуховых аппаратов и дефибрилляторов, и люди, использующие их, должны принимать соответствующие меры предосторожности.

В последние годы у многих вызывает беспокойство излучение от сотового телефона. Несмотря на отсутствие доказанной связи между использованием сотового телефона и проблемами со здоровьем, возможность такой связи не исключена. Опять-таки, всё зависит от длительности облучения. Большие количества радиочастотного излучения может нагревать ткани, что вредит коже или глазам и повышает температуру тела. Некоторые эксперты рекомендуют использовать гарнитуру или устройство громкой связи, если вы часто и подолгу используете свой сотовый телефон.

Наша кожа и глаза поглощают инфракрасное излучение (ИК) в виде тепла. Передозировка ИК-излучения может привести к ожогам и болям. Передозировка ультрафиолета более опасна, потому что, его воздействие на организм отсроченное. Тем не менее, вскоре это воздействие проявляется виде солнечного ожога или чего похуже. Мощное ультрафиолетовое облучение может вызвать рак кожи, катаракту и снижение иммунитета. Помимо солнечного света, источниками ультрафиолетового излучения являются синие лампы и сварочные аппараты.

Радиевые девушки не знали как действует радиация и поплатились жизнью

РАДИЕВЫЕ ДЕВУШКИ

РАДИЕВЫЕ ДЕВУШКИ
В двадцатые годы прошлого века часовая компания использовала недавно открытый радий для того, чтобы циферблат часов светился в темноте. Тысячи девушек-работниц часового завода вручную наносили светящуюся краску. Чтобы сделать тонкими концы кисточек, девушки их лизали языком.

Иногда, для развлечения, девушки наносили краску на зубы и губы и выключали свет. Хотя девушек регулярно проверяли на радиоактивность, они никогда не получали результаты этих тестов. В 1938 году работница по имени Кэтрин Донахью наконец узнала результат своего теста и подала в суд на компанию. Чтобы замять дело компания выплатила ей несколько тысяч долларов, но женщина умерла в том же году. За последующие годы погибли многие другие, но доказать причастность компании к этим смертям так и не удалось.

Ионизирующая радиация

Подобно неионизирующему излучению, ионизирующее излучение представляет собой энергию в виде частиц или волн. Однако энергия ионизирующего излучения настолько велика, что оно может разрушать химические связи, то есть он может заряжать (или ионизировать) атомы облучаемого объекта.

Небольшой поток излучения может выбить из атома пару электронов. Мощное излучение может разрушить ядро атома. Это означает, что, когда ионизирующее излучение проходит через ткани тела, его энергии достаточно для повреждения ДНК. Вот почему гамма-лучи, например, удобны для уничтожения раковых клеток посредством лучевой терапии.

Источниками ионизирующего излучения являются радиоактивные материалы, высоковольтное оборудование, ядерные реакции и звезды. Естественным источником ионизирующей радиации является радон, радиоактивный материал, добываемый из геологической породы. Рентгеновские лучи — хороший пример искусственной ионизирующей радиации.

Виды ионизирующей радиации: альфа-частицы, бета-частицы и различные лучи

Когда нестабильный атом распадается, он излучает альфа- и бета-частицы. Например, уран, радий и полоний выделяют радиоактивные альфа-частицы. Эти частицы, состоящие из протонов и нейтронов, довольно велики по размеру и могут перемещаться только на небольшое расстояние. На практике их можно остановить просто листком бумаги или вашей кожей. Однако вдыхание или проглатывание ал

8 фактов о радиации, которые не помешает знать

Недавно из Страны восходящего солнца на крыльях радиационного облака прилетела страшная новость: на Фукусиме новая утечка, которую даже роботами не залатать. Через два часа они выходят из строя, что уж говорить про людей.

После таких заявлений хочется надеть на себя цинковый костюм и уехать куда-нибудь, где нет радиации. Но она есть везде — так уж устроен космос, человек тут совсем не при чем. Мы знаем про радиацию очень много: знаем, что она вызывает мутации, убивает, и на этом, в общем-то, наши познания заканчиваются. Но чем больше про нее узнаешь, тем спокойнее живешь.

1. Всё идет из космоса

Культура и Чернобыль научили нас паниковать при одном лишь упоминании слова «радиация». Но это всё равно что бояться своей кожи или жидкостей, поскольку радиация окружает нас повсюду. Она среди нас, она от нас неотделима. Каждый день ты контактируешь с радиоактивным, и дело вовсе не в АЭС, атомных подводных лодках и современных гаджетах. Мы просто живем в радиоактивной среде. 85% ежегодной дозы облучения — это так называемая природная радиация. Часть ее формируется из-за космического излучения. Но на протяжении всей истории не было идиотов, ходящих со свинцовыми зонтиками, зато есть люди, которые живут больше ста лет и не болеют. Если уж на то пошло, то самый сильный в истории выброс радиации произошел в 2004 году, и ни Чернобыль, ни Фукусима здесь не при чем. Виновата нейтронная звезда, находящаяся в 50 тысячах световых лет от нашей планеты.
Да что там, в ближайшие несколько тысяч лет система двойной звезды WR 104 должна превратиться в сверхновую. Этот выброс радиации может вызвать на Земле массовое вымирание, а может и не вызвать. В любом случае, бояться нужно именно таких доз.

2. Радиация — жизнь?

Научные факты говорят о том, что чем выше в гору, тем большему космическому излучению подвергается организм. То есть мы получаем меньше защиты от вредного излучения, когда поднимаемся всё дальше от земли. Казалось бы, всё очень плохо, но несмотря на высокий уровень излучения, наука выявила одну интересную особенность: у жителей горных местностей продолжительность жизни гораздо выше. В чем причина — сказать сложно, может быть, радиация является причиной их отменного здоровья. Четкого ответа, увы, нет. Зато недавно был обнаружен еще один плюс в копилку радиации. Оказывается, радиоактивный йод способен обнаружить и уничтожить в организме клетки больной щитовидной железы, даже если они успели поразить другие органы. То есть в перспективе радиацию можно использовать в лечении ненавистного рака.

3. Не всё так хорошо

Впрочем, не всё так гладко. На заре эпохи радиации ее использовали и в хвост, и в гриву, даже в медицине. Например, один врач-шарлатан продавал облученную радием воду, которая рекламировалась как лекарство от артрита, ревматизма, психических заболеваний, рака желудка и импотенции. В итоге сам создатель пострадал от своего детища: от радиевой воды челюсть и зубы горе-бизнесмена буквально распадались на части.

Кроме того, радиация способна сделать мужика стерильным, словно Ведьмака. Разные органы человека реагируют на радиоактивное излучение по-разному. Но, как оказалось, наиболее уязвимы половые клетки – яйцеклетки и сперматозоиды. Перед тем, как отправить своих космонавтов на Луну, американские ученые протестировали чудесное воздействие радиации на 63 заключенных. Кому-то повезло больше, и они просто стали стерильными импотентами, а у кого-то болезни оказались серьезнее, с летальным исходом

.

4. Твой дом — твой источник

Самую большую дозу радиации ты получаешь прямо сейчас, сидя у себя дома, поскольку цемент, песок и щебень содержат природные радионуклиды. Поэтому эти строительные материалы законодательством разделяются по классам в зависимости от их «радиоактивности». Перед сдачей дома в эксплуатацию проводится проверка, чтобы выяснить, действительно ли безопасные материалы использовались при его строительстве. Но насколько она тщательная и неподкупная — сказать сложно.

5. Не все проблемы от АЭС

Так что для тесного контакта с радиацией совсем не обязательно идти работать на АЭС или выходить в космос без скафандра. Достаточно просто пойти работать в гражданскую авиацию и получить приличную дозу излучения. Поэтому они официально классифицируются как «работающие в условиях радиации» — как никак, близость к космосу дает о себе знать. То есть летая под куполом небесным, мы получаем фоновую дозу, превышающую суточную в 4 раза.

Это даже больше, чем после рентгена груди, хотя многие относятся к этой процедуре как к своеобразному самоубийству.

И коль уж речь зашла о профессиях, люди, живущие рядом с угольными электростанциями, получают большую дозу излучения, чем те, кто живет рядом с АЭС. Просто в угле очень много радиоактивных изотопов, как, собственно, и в сигаретном дыме.

6. Опасный камень

Но если бы радиация была так опасна, то, наверное, каждый, кто поднимается по гранитным ступеням, спускается в московское метро или идет по гранитной питерской набережной, умирал от лучевой болезни, поскольку уровень радиации в этом камне превышает даже нормы, допустимые на атомных электростанциях. Но пока что ни у кого не выжигались глаза, не выпадали волосы и не отходила пластами слизистая.

7. Радиоактивная пища

Бразильский орех является не только одним из самых дорогих, но и одним из самых радиоактивных продуктов в мире. Специалисты выяснили, что после приема в пищу даже незначительной порции бразильского ореха, моча и кал человека становятся чрезвычайно радиоактивными.

А всё от того, что корни у орешка уходят так глубоко в землю, что поглощают огромное количество радия, являющегося природным источником излучения.

Не лучше орехов и бананы. Они также производят большое количество излучения с той лишь разницей, что в бананах радиоактивность присутствует в их генетическом коде изначально. Но не стоит паниковать, надевать на себя комбинезон и идти закапывать его куда подальше. Чтобы у тебя возникли хотя бы малейшие симптомы лучевой болезни, нужно сожрать как минимум 5 миллионов плодов. Так что не нужно поддаваться панике, когда кто-то в очередной раз говорит, что горсть урана почти так же радиоактивна, как 10 бананов.

8. Это не заразно

В результате всего возникает резонный вопрос: а можно ли вообще контактировать с облученными людьми? Мало ли, как жизнь сложится, вдруг еще одна АЭС накроется медным тазом.

Вопреки мнению многих, радиация не заразна. С больными, страдающими лучевой болезнью и другими заболеваниями, вызванными воздействием радиации, можно общаться открыто, без средств индивидуальной защиты. То есть сам человек, подвергшийся действию радиации, не становится автоматическим излучателем радиоактивных веществ. А вот его одежда, испачканная радиоактивными материалами (жидкостью, пылью), создает некоторую опасность для других. Источником радиации можно назвать только больного, в организме которого находятся введенные медиками радиоактивные препараты. Но они быстро распадаются, поэтому серьезной опасности в этом случае нет.

радиоактивности | Определение, типы, применения и факты

Радиоактивность , свойство, проявляемое некоторыми типами материи, спонтанно испускать энергию и субатомные частицы. По сути, это атрибут отдельных атомных ядер.

Нестабильное ядро ​​будет спонтанно распадаться или распадаться до более стабильной конфигурации, но будет делать это только несколькими конкретными способами, испуская определенные частицы или определенные формы электромагнитной энергии.Радиоактивный распад - это свойство нескольких природных элементов, а также искусственно созданных изотопов этих элементов. Скорость распада радиоактивного элемента выражается периодом его полураспада; то есть время, необходимое для распада половины любого заданного количества изотопа. Период полураспада колеблется от более 1 000 000 000 лет для некоторых ядер до менее 10 −9 секунд ( см. Ниже Скорости радиоактивных переходов). Продукт процесса радиоактивного распада, называемый дочерним изотопом родительского изотопа, сам может быть нестабильным, и в этом случае он тоже распадется.Процесс продолжается до тех пор, пока не образуется стабильный нуклид.

Характер радиоактивных выбросов

Излучением наиболее распространенных форм спонтанного радиоактивного распада являются альфа (α) частица, бета (β) частица, гамма (γ) луч и нейтрино. Альфа-частица на самом деле является ядром атома гелия-4 с двумя положительными зарядами 4 / 2 He. Такие заряженные атомы называются ионами. У нейтрального атома гелия есть два электрона вне ядра, уравновешивающих эти два заряда.Бета-частицы могут быть заряжены отрицательно (бета-минус, символ e ) или положительно заряжены (бета-плюс, символ e + ). Бета-минус [β - ] частица на самом деле представляет собой электрон, созданный в ядре во время бета-распада, независимо от орбитального электронного облака атома. Бета-плюс частица, также называемая позитроном, является античастицей электрона; при сближении две такие частицы взаимно аннигилируют.Гамма-лучи - это электромагнитные излучения, такие как радиоволны, свет и рентгеновские лучи. Бета-радиоактивность также производит нейтрино и антинейтрино, частицы, которые не имеют заряда и имеют очень небольшую массу, обозначенные символами ν и ν соответственно.

При менее распространенных формах радиоактивности могут испускаться осколки деления, нейтроны или протоны. Осколки деления сами по себе являются сложными ядрами с обычно от одной трети до двух третей заряда Z и массой A родительского ядра.Нейтроны и протоны, конечно, являются основными строительными блоками сложных ядер, имеющих примерно единицу массы в атомном масштабе и нулевой заряд или единичный положительный заряд, соответственно. Нейтрон не может долго существовать в свободном состоянии. Он быстро захватывается ядрами вещества; в противном случае в свободном космосе он подвергнется бета-отрицательному распаду на протон, электрон и антинейтрино с периодом полураспада 12,8 минут. Протон является ядром обычного водорода и стабилен.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской.Подпишитесь сегодня

Виды радиоактивности

Ранние работы по естественной радиоактивности, связанной с урановыми и ториевыми рудами, выявили два различных типа радиоактивности: альфа- и бета-распад.

При альфа-распаде выделяется энергичный ион гелия (альфа-частица), в результате чего дочернее ядро ​​с атомным номером два меньше, чем родительское, и с атомным номером четыре меньше, чем у родительского. Примером является распад (обозначенный стрелкой) распространенного изотопа урана, 238 U, до дочернего тория и альфа-частицы:

Для этой и последующих реакций указаны выделенная энергия ( Q ) в миллионах электрон-вольт (МэВ) и период полураспада ( t 1⁄2 ).Следует отметить, что при альфа-распаде заряды или количество протонов, показанные в нижнем индексе, сбалансированы по обе стороны от стрелки, как и атомные массы, указанные в верхнем индексе.

При бета-отрицательном распаде испускается энергичный отрицательный электрон, образуя дочернее ядро ​​с одним большим атомным номером и тем же массовым числом. Примером может служить распад дочернего продукта урана торий-234 до протактиний-234:

В приведенной выше реакции бета-распада ν представляет собой антинейтрино.Здесь количество протонов увеличивается на один в реакции, но общий заряд остается прежним, потому что также создается электрон с отрицательным зарядом.

.

радиоактивности | Определение, типы, применения и факты

Радиоактивность , свойство, проявляемое некоторыми типами материи, спонтанно испускать энергию и субатомные частицы. По сути, это атрибут отдельных атомных ядер.

Нестабильное ядро ​​будет спонтанно распадаться или распадаться до более стабильной конфигурации, но будет делать это только несколькими конкретными способами, испуская определенные частицы или определенные формы электромагнитной энергии.Радиоактивный распад - это свойство нескольких природных элементов, а также искусственно созданных изотопов этих элементов. Скорость распада радиоактивного элемента выражается периодом его полураспада; то есть время, необходимое для распада половины любого заданного количества изотопа. Период полураспада колеблется от более 1 000 000 000 лет для некоторых ядер до менее 10 −9 секунд ( см. Ниже Скорости радиоактивных переходов). Продукт процесса радиоактивного распада, называемый дочерним изотопом родительского изотопа, сам может быть нестабильным, и в этом случае он тоже распадется.Процесс продолжается до тех пор, пока не образуется стабильный нуклид.

Характер радиоактивных выбросов

Излучением наиболее распространенных форм спонтанного радиоактивного распада являются альфа (α) частица, бета (β) частица, гамма (γ) луч и нейтрино. Альфа-частица на самом деле является ядром атома гелия-4 с двумя положительными зарядами 4 / 2 He. Такие заряженные атомы называются ионами. У нейтрального атома гелия есть два электрона вне ядра, уравновешивающих эти два заряда.Бета-частицы могут быть заряжены отрицательно (бета-минус, символ e ) или положительно заряжены (бета-плюс, символ e + ). Бета-минус [β - ] частица на самом деле представляет собой электрон, созданный в ядре во время бета-распада, независимо от орбитального электронного облака атома. Бета-плюс частица, также называемая позитроном, является античастицей электрона; при сближении две такие частицы взаимно аннигилируют.Гамма-лучи - это электромагнитные излучения, такие как радиоволны, свет и рентгеновские лучи. Бета-радиоактивность также производит нейтрино и антинейтрино, частицы, которые не имеют заряда и имеют очень небольшую массу, обозначенные символами ν и ν соответственно.

При менее распространенных формах радиоактивности могут испускаться осколки деления, нейтроны или протоны. Осколки деления сами по себе являются сложными ядрами с обычно от одной трети до двух третей заряда Z и массой A родительского ядра.Нейтроны и протоны, конечно, являются основными строительными блоками сложных ядер, имеющих примерно единицу массы в атомном масштабе и нулевой заряд или единичный положительный заряд, соответственно. Нейтрон не может долго существовать в свободном состоянии. Он быстро захватывается ядрами вещества; в противном случае в свободном космосе он подвергнется бета-отрицательному распаду на протон, электрон и антинейтрино с периодом полураспада 12,8 минут. Протон является ядром обычного водорода и стабилен.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской.Подпишитесь сегодня

Виды радиоактивности

Ранние работы по естественной радиоактивности, связанной с урановыми и ториевыми рудами, выявили два различных типа радиоактивности: альфа- и бета-распад.

При альфа-распаде выделяется энергичный ион гелия (альфа-частица), в результате чего дочернее ядро ​​с атомным номером два меньше, чем родительское, и с атомным номером четыре меньше, чем у родительского. Примером является распад (обозначенный стрелкой) распространенного изотопа урана, 238 U, до дочернего тория и альфа-частицы:

Для этой и последующих реакций указаны выделенная энергия ( Q ) в миллионах электрон-вольт (МэВ) и период полураспада ( t 1⁄2 ).Следует отметить, что при альфа-распаде заряды или количество протонов, показанные в нижнем индексе, сбалансированы по обе стороны от стрелки, как и атомные массы, указанные в верхнем индексе.

При бета-отрицательном распаде испускается энергичный отрицательный электрон, образуя дочернее ядро ​​с одним большим атомным номером и тем же массовым числом. Примером может служить распад дочернего продукта урана торий-234 до протактиний-234:

В приведенной выше реакции бета-распада ν представляет собой антинейтрино.Здесь количество протонов увеличивается на один в реакции, но общий заряд остается прежним, потому что также создается электрон с отрицательным зарядом.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *