Принцип действия ядерное оружие: Ядерное оружие — это… Что такое Ядерное оружие?

Содержание

Как работает атомная бомба | Журнал Популярная Механика

В конце концов вещество все же разлетается, прекращается деление, но процесс на этом не завершается: энергия перераспределяется между ионизованными осколками разделившихся ядер и другими испущенными при делении частицами. Их энергия — порядка десятков и даже сотен МэВ, но только электрически нейтральные гамма-кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом и «ускользнуть». Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение — правда, уже не жесткое ядерное, а более мягкое, с энергией на три порядка меньшей, но все же более чем достаточной, чтобы выбить у атомов электроны — не только с внешних оболочек, но и вообще все. Мешанина из голых ядер, ободранных с них электронов и излучения с плотностью в граммы на кубический сантиметр (попытайтесь представить, как хорошо можно загореть под светом, приобретшим плотность алюминия!) — все то, что мгновение назад было зарядом, — приходит в некое подобие равновесия. В совсем молодом огненном шаре устанавливается температура порядка десятков миллионов градусов.

Огненный шар

Казалось бы, даже и мягкое, но двигающееся со скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в холодном воздухе пробег квантов кэвных энергий составляет сантиметры, и двигаются они не по прямой, а меняя направление движения, переизлучаясь при каждом взаимодействии. Кванты ионизируют воздух, распространяются в нем, подобно вишневому соку, вылитому в стакан с водой. Это явление называют радиационной диффузией.

Молодой огненный шар взрыва мощностью в 100 кт через несколько десятков наносекунд после завершения вспышки делений имеет радиус 3 м и температуру почти 8 млн кельвинов. Но уже через 30 микросекунд его радиус составляет 18 м, правда, температура спускается ниже миллиона градусов. Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: передать ему значительный импульс при диффузии излучение не может. Но оно накачивает в этот воздух огромную энергию, нагревая его, и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы, распираемой изнутри тем, что раньше было зарядом. Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. В отличие от пузыря, ее, конечно, ничто не надувает: с внутренней стороны почти не остается вещества, все оно летит от центра по инерции, но через 30 микросекунд после взрыва скорость этого полета — более 100 км/с, а гидродинамическое давление в веществе — более 150 000 атм! Стать чересчур уж тонкой оболочке не суждено, она лопается, образуя «волдыри».

Нейтронный источник В вакуумной нейтронной трубке между насыщенной тритием мишенью (катодом) 1 и анодным узлом 2 прикладывается импульсное напряжение в сотню киловольт. Когда напряжение максимально, необходимо, чтобы между анодом и катодом оказались ионы дейтерия, которые и требуется ускорить. Для этого служит ионный источник. На его анод 3 подается поджигающий импульс, и разряд, проходя по поверхности насыщенной дейтерием керамики 4, образует ионы дейтерия. Ускорившись, они бомбардируют мишень, насыщенную тритием, в результате чего выделяется энергия 17,6 МэВ и образуются нейтроны и ядра гелия-4. По составу частиц и даже по энергетическому выходу эта реакция идентична синтезу — процессу слияния легких ядер. В 1950-х многие так и считали, но позже выяснилось, что в трубке происходит «срыв»: либо протон, либо нейтрон (из которых состоит ион дейтерия, разогнанный электрическим полем) «увязает» в ядре мишени (трития). Если увязает протон, то нейтрон отрывается и становится свободным.

Какой из механизмов передачи энергии огненного шара окружающей среде превалирует, зависит от мощности взрыва: если она велика — основную роль играет радиационная диффузия, если мала — расширение плазменного пузыря. Понятно, что возможен и промежуточный случай, когда эффективны оба механизма.

Процесс захватывает новые слои воздуха, энергии на то, чтобы ободрать все электроны с атомов, уже не хватает. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного… Начинается образование ударной волны.

Ударная волна и атомный гриб

При отрыве ударной волны от огненного шара меняются характеристики излучающего слоя и резко возрастает мощность излучения в оптической части спектра (так называемый первый максимум). Далее конкурируют процессы высвечивания и изменения прозрачности окружающего воздуха, что приводит к реализации и второго максимума, менее мощного, но значительно более длительного — настолько, что выход световой энергии больше, чем в первом максимуме.

Вблизи взрыва все окружающее испаряется, подальше — плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут, как жидкость, под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.

Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров того, что побывало плазмой заряда, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку сконденсировавшейся влаги, за ним тянется пыль с поверхности земли, образуя «ножку» того, что принято называть «атомным грибом».

Нейтронное инициирование

Внимательные читатели могут с карандашом в руках прикинуть энерговыделение при взрыве. При времени нахождения сборки в сверхкритическом состоянии порядка микросекунд, возрасте нейтронов порядка пикосекунд и коэффициенте размножения менее 2 выделяется около гигаджоуля энергии, что эквивалентно… 250 кг тротила. А где же кило- и мегатонны?


Нейтроны — медленные и быстрые

В неделящемся веществе, «отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем легче (ближе им по массе) ядра. Чем в большем числе столкновений поучаствовали нейтроны, тем более они замедляются, и, наконец, приходят в тепловое равновесие с окружающим веществом — термализуются (это занимает миллисекунды). Скорость тепловых нейтронов — 2200 м/с (энергия 0,025 эВ). Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с замедлением их способность вступать в ядерные реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.
Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые вернутся в шар («отразятся») и, потеряв свою энергию, с гораздо большей вероятностью вызовут акты деления. Если шар окружить слоем бериллия толщиной 25 мм, то, можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Но за такую экономию платят временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение затягивается. Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на тепловых нейтронах, например — в растворе солей урана в хорошем замедлителе — воде, масса сборок — сотни граммов, но раствор просто периодически вскипает. Выделяющиеся пузырьки пара уменьшают среднюю плотность делящегося вещества, цепная реакция прекращается, а, когда пузырьки покидают жидкость — вспышка делений повторяется (если закупорить сосуд, пар разорвет его — но это будет тепловой взрыв, лишенный всех типичных «ядерных» признаков).

Дело в том, что цепь делений в сборке начинается не с одного нейтрона: в нужную микросекунду их впрыскивают в сверхкритическую сборку миллионами. В первых ядерных зарядах для этого использовались изотопные источники, расположенные в полости внутри плутониевой сборки: полоний-210 в момент сжатия соединялся с бериллием и своими альфа-частицами вызывал нейтронную эмиссию. Но все изотопные источники слабоваты (в первом американском изделии генерировалось менее миллиона нейтронов за микросекунду), а полоний уж очень скоропортящийся — всего за 138 суток снижает свою активность вдвое. Поэтому на смену изотопам пришли менее опасные (не излучающие в невключенном состоянии), а главное — излучающие более интенсивно нейтронные трубки (см. врезку): за несколько микросекунд (столько длится формируемый трубкой импульс) рождаются сотни миллионов нейтронов. А вот если она не сработает или сработает не вовремя, произойдет так называемый хлопок, или «пшик» — маломощный тепловой взрыв.

Как сделать атомную бомбу. Устройство, виды, правда о нейтронной бомбе | Наука

В середине прошлого века устройство атомной бомбы было строжайшей тайной. Только крайне ограниченный круг учёных, приближённых к правительствам великих держав, был посвящён в этот секрет. Прочим же смертным полагалось лишь знать, что к делу имеет какое-то отношение формула E=mc², что нужен уран и что всё это очень сильное колдунство.

Сейчас всё изменилось. Ныне устройство атомной бомбы можно узнать из открытых источников, но по-прежнему мало кто представляет, как работает самое страшное оружие человечества. А разобраться стоит. Например, чтобы определять, где в книгах и фильмах фантастические допущения, где антинаучная чушь, а где автор справочник прочёл, но ничего не понял.

Атомное оружие основано на эффекте цепной реакции. Ядра некоторых изотопов тяжёлых металлов нестабильны и, захватив пролетающий мимо нейтрон, немедленно распадаются. При этом возникают как крупные осколки, так и ещё несколько свободных нейтронов. Они могут спровоцировать распад других ядер — и в результате выделится ещё больше нейтронов. Этот лавинообразный процесс приводит к стремительному выделению энергии — ядерному взрыву, мощность которого эквивалентна 25 тоннам тротила на каждый грамм распавшегося изотопа.

Разумеется, цепная реакция не начнётся, если слиток металла недостаточно велик и большая часть освободившихся нейтронов просто улетает за его пределы. Чтобы произошёл взрыв, количество расщепляющегося материала должно превысить некую критическую массу. Минимальное взрывоопасное количество вещества — 47 килограммов для урана-235 и 10 килограммов для плутония-239: на практике только эти два металла используются для создания ядерных взрывных устройств.

Как сделать атомную бомбу 4

Уже вторая, сброшенная на Нагасаки бомба «Толстяк», имела шаровой заряд

Может показаться, что создать критическую массу легко: взять два слитка урана, каждый пуда по полтора, и соединить. Но это не лучшая идея, поэтому при изготовлении ядерных боеприпасов используются сложно устроенные имплозивные, или шаровые заряды. Их эффект основан на том, что при воздействии силы на поверхность сферы по мере приближения к её центру давление будет возрастать в квадрате. Как следствие, шаровой заряд представляет собой «матрёшку». Внешний сферический слой образует обычная «химическая» взрывчатка, по поверхности которой равномерно распределены 64 детонатора. Все детонаторы должны сработать одновременно — тогда происходит взрыв, который порождает направленную к центру ударную волну.

Если хотя бы один детонатор не сработает вовремя, сжатие будет ассиметричным и приведёт лишь к разрушению боеприпаса. И это служит надёжной защитой. Бомба может выпасть с самолёта, упасть вместе с самолётом, сгореть в вагоне в результате железнодорожной катастрофы, в неё даже может попасть артиллерийский снаряд (правда, последнее испытывалось только на макетах). В худшем случае это приведёт к подрыву обычной, химической взрывчатки, но незапланированной детонации ядерного заряда не произойдёт.

Следом за взрывчаткой в шаровом заряде располагается слой алюминия. Лёгкий металл нужен, чтобы увеличить радиус заряда, а значит, и итоговое давление в центре сферы. Внутрь полой алюминиевой сферы вкладывается тампер — полая сфера из обеднённого урана, которая служит массивным поршнем

Через тампер концентрическая ударная волна передаётся на третью, самую маленькую полую сферу, изготовленную из ядерной взрывчатки — урана или плутония. В самом же центре находится миниатюрный источник нейтронов на основе трития. Масса «ядерной взрывчатки» в шаровом заряде обычно в полтора-три раза меньше критической. Развитие цепной реакции в боеприпасе происходит благодаря дополнительным нейтронам, испускаемым тритием, увеличению плотности металла в момент максимального сжатия, а также потому, что урановый тампер отражает рождающиеся при распаде ядер нейтроны внутрь, не позволяя им покидать зону реакции.

Как сделать атомную бомбу

Шаровой заряд первой советской атомной бомбы РДС-1 (Фото: Музей ядерного оружия РФЯЦ-ВНИИЭФ)

«Шаровая» конструкция позволяет безопасно заложить в боеприпас и сверхкритический заряд расщепляющегося изотопа. Рекорд здесь принадлежит британцам: они изготовили тонкостенную плутониевую сферу, масса которой превышала критическую в 12 раз! Но тогда сынов Туманного Альбиона просто заели амбиции: как же так, у Советов и Штатов есть водородная бомба, а у них нет. На изготовление этого чуда техники королевство потратило годичный запас расщепляющихся материалов.

Повысить мощность боеприпаса можно и без такой траты дефицитных материалов. В активированном шаровом заряде цепной распад продолжается не до исчерпания горючего, как в обычной бомбе, а до разрушения устройства. Испарившийся урановый шар уже не обладает достаточной плотностью, чтобы поддерживать цепную реакцию. У первых имплозивных бомб до распыления заряда успевало выгореть лишь 10% ядерной взрывчатки, а у современных этот показатель колеблется от 30 до 60%. Увеличить степень выгорания можно, обеспечив дополнительное сжатие. Для этого используется большой — до четверти тонны — заряд химической взрывчатки. Хорошо помогает и увеличение толщины тампера. Конечно, дополнительная инертная масса лишь краткий миг способна противостоять рвущемуся из зоны реакции ядерному пламени. Но когда интенсивность реакции нарастает по экспоненте, даже этот миг имеет огромное значение.

Как сделать атомную бомбу 16

На этапе горения лития и урана термоядерная бомба по устройству напоминает звезду. Она полностью состоит из плазмы — раскалённого ионизированного газа, но при этом плотнее свинца

Ещё сильнее разрушительную силу современных ядерных боеприпасов можно повысить капсулой с термоядерным горючим. Рядом с первым шаровым зарядом, играющим роль детонатора, размещается второй, устроенный несколько иначе. Вместо слоя химической взрывчатки он покрыт инертным пластиком. Сразу под ним располагается тампер из обеднённого урана. А между тампером и центральной полой сферой, изготовленной из плутония, размещается слой дейтерида лития-6 — соединения лёгкого изотопа лития с тяжёлым водородом. Этот белый порошок не радиоактивен и совершенно безопасен, если не поливать его водой.

Подрыв первого шарового заряда превращает пластиковый слой в перегретую плазму, давление которой приводит к имплозии термоядерной капсулы. Её плутониевая сердцевина достигает критической плотности и тоже взрывается. Литий, поглощая образовавшиеся нейтроны, разлагается на гелий и сверхтяжёлый водород — тритий. Температура на фронте столкновения ударных волн в этот момент оказывается достаточной, чтобы началась реакция термоядерного синтеза с участием дейтерия и трития. А это означает третий взрыв — примерно в сто раз сильнее двух первых.

Как сделать атомную бомбу 3

Царь-бомба, она же «Кузькина мать», самая мощная термоядерная бомба в истории (Croquant | CC BY-SA 3.0)

Но и детонация термоядерного горючего — только вторая фаза термоядерного взрыва. Если ядерный взрыв прекращается после разрушения взрывного устройства, то механизм водородной бомбы продолжает работать и после перехода в плазменное агрегатное состояние. При синтезе ядер тяжёлого и сверхтяжёлого водорода рождаются ядра гелия и нейтроны. Энергия нейтронов настолько велика, что они не захватываются тяжёлыми ядрами, а разбивают их, как бильярдный шар пирамиду.

Под градом нейтронов в реакцию вступает уран-238, в обычных условиях вполне безопасный. Это третья фаза взрыва, увеличивающая его мощность ещё впятеро. Вклад энергии от распада ядер урана не так уж велик, но этот процесс порождает новые тучи нейтронов. А чем плотнее нейтронный поток, тем больше лития перейдёт в тритий, тем выше будет КПД взрывного устройства. Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%. А это чудовищная энергия.

Как сделать атомную бомбу 5

«Малыш», первая атомная бомба, применённая в бою, относилась к пушечному типу

Ядерные боеприпасы ценятся в первую очередь за мощь, но иногда компактность оказывается важнее. Как следствие, некоторое распространение (практически только в США) получили так называемые пушечные заряды. Они состоят из плутониевого цилиндра с отверстием в центре, стержня из того же металла, небольшого количества пороха, который вколачивает стержень в отверстие, единственного детонатора для инициации процессов и… всё. Очевидными преимуществами пушечной схемы были предельная простота, безукоризненная надёжность срабатывания и крошечные размеры.

Но заряд пушечного типа не просто надёжен, а слишком надёжен. Это его главный недостаток. Тепловое или механическое повреждение боеприпаса не выведет его из строя, а напротив — может заставить сработать. В СССР посчитали, что янки — crazy, и копировать этот ужас не стали.

Как сделать атомную бомбу 8

«Дэви Крокетт» — надкалиберная ядерная мина для стрельбы из противотанковых 106-мм безоткатных пушек. Американцы действительно намеревались отстреливаться «Крокеттами» от советских танков и наклепали немало этих боеприпасов. Смешной тротиловый эквивалент — всего 10 тонн — позволял бить прямой наводкой

Вторым недостатком пушечных зарядов стала их расточительность. Количество ядерной взрывчатки обязательно должно быть сверхкритическим. То есть расщепляющегося металла «на выстрел» уходит в среднем в три раза больше, чем при другой схеме. Если же пересчитывать на килотонны, разница оказывается ошеломляющей: КПД пушечного заряда не выше 1%. Таким он был у единственного в истории стратегического боеприпаса с зарядом пушечного типа — бомбы «Малыш», сброшенной на Хиросиму. Но там всё устройство весило четыре тонны, а урановые детали были помещены в обрезок орудийного ствола. А при использовании пушечного заряда без сверхпрочного корпуса КПД падает до 0,01–0,004%. Американцы, впрочем, считали, что крайне низкая — от 10 до 150 тонн в тротиловом эквиваленте — мощность для тактического ядерного боеприпаса не изъян, а достоинство.

Примитивное устройство пушечного заряда породило миф, что ядерную бомбу можно собрать в гараже. Но частному лицу достать несколько десятков килограммов почти чистого урана-235 невозможно. А плутоний вдобавок стремительно окисляется на воздухе, очень ядовит и практически не поддаётся механической обработке. Попытавшись изготовить кустарным способом из небольших плутониевых слитков детали взрывного устройства, самоделкин умрёт от лучевой болезни, от отравления или в результате вспыхнувшего в гараже пожара, но ничего не достигнет.

Как сделать атомную бомбу 6

Советский 420-мм миномёт 2Б1 «Ока» предназначался для стрельбы ядерными боеприпасами

Как сделать атомную бомбу 7

2С7 «Пион». В 1970-х годах в СССР появились миниатюрные шаровые заряды, которые помещались в снаряд 203-мм пушки, но мощность их обычно составляла 5–15 килотонн, и «тактическими» такие боеприпасы можно было назвать лишь условно

Уран или плутоний?

На первый взгляд преимущества плутония над ураном, критическая масса которого впятеро выше, очевидны. Заряд получается миниатюрным. При распаде плутоний выделяет больше свободных нейтронов, чем уран, что крайне важно, например, при изготовлении термоядерных боеприпасов. К тому же обогащённый уран очень дорог в производстве, плутоний же добывается из отработанного топлива для атомных электростанций.

Но на практике выбор не так прост, поскольку плутоний — металл радиоактивный. Если период полураспада урана-235 — 713 миллионов лет, то у плутония-239 он составляет всего 24 тысячи лет. К тому же извлекаемый из АЭС плутоний на самом деле представляет собой смесь изотопов, излучение которых выводит из строя электронные компоненты боеприпаса и на молекулярном уровне «разъедает» химическое взрывчатое вещество.

Как следствие, в военном деле обычно используется специальный «оружейный» плутоний, который провёл в активной зоне ядерного реактора всего 1–2 месяца. Доля тяжёлых примесей в нём составляет 2–7%. Но такой плутоний уже очень недёшев и всё равно радиоактивен.

Как сделать атомную бомбу 10

Большая часть обогащённого урана производится в России

В романе Дмитрия Глуховского «Метро 2033» даже спустя 20 лет после ядерной бомбардировки радиация не позволяет выжившим покинуть убежища. Такое видение постапокалиптического мира в фантастической литературе стало каноническим. Хотя на практике всё иначе — Хиросиму и Нагасаки быстро отстроили на прежнем месте, и жители их не оставляли.

Чтобы увеличить радиационное воздействие ядерного боеприпаса (особенно в глобальном масштабе и долгосрочной перспективе), в 1950 году американский физик Лео Сциллард предложил заменить в шаровом заряде урановый и алюминиевый тамперы на оболочку из кобальта. Взрыв, конечно, будет слабее, но, захватывая нейтроны, безвредный кобальт-59 превращается в очень опасный радиоактивный изотоп кобальт-60, широко применяющийся при производстве промышленных источников гамма-излучения. Если таких бомб сделать достаточно много и разом взорвать даже на своей территории, полагал учёный, то кобальт рассеется по всей планете с потоками воздуха… и вот тогда точно конец!

Как сделать атомную бомбу 11

Одна из особенностей ядерных зарядов пушечного типа — непредсказуемые колебания мощности взрыва в пределах 2–2.5 раз. Она зависит от того, на каком именно этапе вхождения плутониевого стержня в цилиндр вспыхивала цепная реакция (фото: (National Nuclear Security Administration, 1953)

Фантастов идея вдохновила. Кобальтовая «бомба Судного дня» упоминается в фильме «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу» Стэнли Кубрика, в романах Роджера Желязны, Агаты Кристи, Сергея Лукьяненко. Однако военные и политики отнеслись к идее без особого энтузиазма. В реальности «грязные» бомбы действительно разрабатывались, по крайней мере в СССР, но никогда не принимались на вооружение и не производились. Даже испытания проводились только имитационные — с использованием нерадиоактивных изотопов.

В результате испытаний от идеи быстро отказались. Вопреки прогнозам, загрязнённая площадь была невелика — как средство массового поражения кобальтовый заряд уступал по эффективности даже многим химическим боеприпасам. «Грязная бомба» не выдерживала критики и как ультимативное оборонительное оружие, создающего на пути противника непроходимую зону. Предсказать точное расположение, размер и форму смертоносного пятна оказалось невозможно.

Калифорниевая бомба

Как сделать атомную бомбу 9

Калифорний часто называют самым дорогим веществом в мире. Это не совсем так, но среди изотопов, которые производят промышленно, он чемпион

Фантасты уже много лет обдумывают идеи ядерной взрывчатки на основе экзотических веществ. Во вселенной Великорасы Александра Зорича, например, применяются сверхмощные калифорниевые боеприпасы. Почему калифорниевые? Вероятно, автор заглянул в справочник и узнал, что данный металл обладает критической массой впятеро меньшей, чем у плутония… Но из этого же не следует, что взрыв калифорниевой бомбы будет впятеро сильнее при том же весе! Напротив, безопасный — подкритический — шаровой заряд из калифорния окажется не только в 3000 раз дороже и в 30 раз радиоактивнее, но и впятеро слабее плутониевого.

Но, может быть, использование синтетических изотопов с минимальной критической массой позволит создать миниатюрное взрывное устройство? Теоретически это возможно, но зачем военным безумно дорогая, зато слабенькая атомная бомба, умещающаяся в кейс, знают только фантасты. Советский «ядерный ранец» РЯ-6 мощностью в одну килотонну с зарядом на основе плутония весил всего 25 кг, и военные не считали, что им нужно что-то ещё легче.

Противоположностью «грязной» кобальтовой бомбе можно считать нейтронную: она не заражает территорию, поражает только живую силу и оставляет невредимыми материальные ценности. Во всяком случае, такого мнения придерживалась как американская, так и советская пресса в 70–80-х годах. Последняя также утверждала, что нейтронные боеприпасы есть только у США, прозрачно намекая на тягу вероятного противника к чужим материальным ценностям.

Как сделать атомную бомбу 13

Приближая источник радиации к бериллиевой мишени, нейтроны можно испускать направленно. На марсоходе Curiosity установлена нейтронная пушка российского производства. Поговаривают, что мощность этого устройства слишком высока для исследовательских целей (фото: NASA)

Как и в случае кобальтовой бомбы, все утверждения о свойствах нейтронных боеприпасов оказались вымыслом. Устройство представляло собой обычный шаровой заряд, в котором слои алюминия и урана заменены слоем бериллия. Такое решение снижало КПД, зато бериллий, поглощая ядра гелия, появляющиеся в результате распада плутония, испускал нейтроны — слишком быстрые, чтобы поддерживать цепную реакцию, но не обладающие достаточной энергией для раскалывания ядер. Как следствие, взрыв (формально термоядерный!) выходил совсем слабым — 5 килотонн или около того. Причём нейтроны уносили до 80% выделившейся энергии.

Нейтронные боевые части планировалось устанавливать на противоракеты для уничтожения советских боеголовок. Перехват осуществлялся на орбите, но в вакууме ударная волна не образуется, а рентгеновское и световое излучение позволяло поразить цель на дистанции не более километра от подрыва заряда. Предполагалось, что использование нейтронных боеприпасов позволит увеличить радиус поражения в полтора раза. К тому же боеприпасы такого типа можно без опаски применять над собственной территорией: рентгеновского излучения там кот наплакал, а нейтроны теряют «убойную силу» в атмосфере из-за сопротивления азота.

После появления современных противоракет, позволяющих перехватывать боеголовки на минимальной высоте (и едва ли не прямым попаданием!), производство нейтронных боеприпасов потеряло смысл. Откуда взялся миф про «сохранение материальных ценностей» — тайна. Если подорвать нейтронный заряд вблизи от поверхности, действительно возникнет узкая — метров триста шириной — зона, в которой уровень радиации всё ещё будет смертельным, а каменные здания уже устоят, хотя и будут объяты пламенем. Но никакой практической ценности эта особенность не имеет.

Как сделать атомную бомбу 15

Применение ядерных зарядов в мирных целях, несомненно, возобновится, когда этого позволит политическая ситуация. По сравнению с энергетическим атомным реактором бомба представляет небольшую радиационную опасность, а выгода может быть значительной (на фото — Седанский кратер, созданный мирным ядерным взрывом)

Проблему сохранения материальной инфраструктуры пытались решить советские инженеры, работавшие в 1980-х над созданием «чистых», или «спектральных» бомб. Применение боеприпаса такого типа не должно было вызывать заражение местности. Для этого в конструкции термоядерной бомбы урановые детали заменяли на свинцовые — ядра этого металла выдерживают попадание быстрых нейтронов и не активируются медленными. Количество использованного плутония сводилось к минимуму благодаря изощрённым способам усиления имплозии. При сгорании же лития радиоактивных веществ не образуется. Таким образом, подрыв бомбы на высоте нескольких километров позволял рентгеновской вспышкой очистить большую площадь от позвоночных без какого-либо иного ущерба для экологии.

Насколько известно, спектральные боеприпасы в СССР серийно не производились. Наступила эпоха разрядки, и применение ядерных зарядов для создания собственных, а не сохранения чужих материальных ценностей стало более эффективным экономически. «Мирные» ядерные взрывы в Советском Союзе производились несколько раз в год для изменения рельефа, создания подземных хранилищ отходов, геологической разведки, а также чтобы упростить добычу полезных ископаемых. «Чистые» заряды при этом оказались бы очень кстати, но мораторий на ядерные испытания вскоре привёл к свёртыванию программы.

Суть, история создания и испытание ядерного оружия — Рамблер/новости

Ядерное оружие — одно из самых жутких изобретений человечества, которое одновременно и гарантирует странам — его обладателям безопасность, и подвергает угрозе уничтожения всю нашу планету. Являясь плодом технического и научного прогресса, оно, тем не менее, вызывало ужас учёных даже на самых ранних стадиях разработки. В нашей статье мы подробно разберём все основные аспекты этой сложной темы. История создания ядерного оружия Всё начиналось ещё в конце девятнадцатого столетия, когда учёному Беккерелю удалось исследовать радиоактивность урана. Важность этого открытия нельзя было переоценить. В 1898 году знаменитая пара супругов — Пьер Кюри и Мария Склодовская-Кюри — провели исследование настурана, являющегося минералом урана, и установили, что он чрезвычайно радиоактивен. На стыке веков исследователи уже в ускоренном темпе выискивали новые радиоактивные изотопы. Дальше — больше. Сформулирован закон радиоактивного распада, который послужил отправной точкой в изучении ядерной изометрии. Как только выяснилось, что атом уже не является самой мелкой и неделимой по своей природе частицей, стали предприниматься попытки расщепить его. Необходимо отметить научный вклад в изучение радиоактивности, который привнёс Эрнест Резерфорд. Именно он выявил, что радиация, в сущности, представляет собой распад атомов с появлением других микрочастиц. Он проводил опыты с альфа-частицами и золотой фольгой, в ходе которых выяснил, что в атоме есть положительно заряженное ядро. Совместно с Нильсом Бором он установил, что вокруг ядра расположены отрицательные по заряду электроны. Бор же утверждал, что у разных атомов число электронов различно. Более того, он выдвинул свою модель — по его мнению, электроны располагались вокруг ядра подобно тому, как планеты расположены вокруг солнца. У каждого есть своя орбита. На данный момент принято ассоциировать электроны с неким облаком, но, в общем и целом, модель Бора была состоятельной. В 1919 году Резерфорд самолично осуществил первое в истории расщепление атома. В качестве подопытных были использованы ядра газообразного азота. Под градом альфа-частиц подопытные частицы отделились от водорода. Тогда-то Резерфорд и предположил, что ядра водорода универсальны, и из них состоят абсолютно все другие. Полученные частицы были положительно заряжены и получили название протонов. В 1932 году Джеймс Чедвик подтвердил, что протоны — вовсе не единственная составляющая атомного ядра. Помимо них, там присутствуют ещё и совершенно не заряженные частицы — нейтроны. Тогда и сформировалось окончательно видение строения атома: в ядре — положительные протоны и нейтральные нейтроны, а вокруг него — череда электронов, расположенных на своих орбитах. Протоны по заряду уравновешивают электроны. Ближе к середине века учёный Энрико Ферми поставил интересный научный вопрос: что случится, если направить поток более мелких атомов на самый крупный из них — радиоактивный уран? Ему казалось, что нейтроны меньших атомов просто присоединятся к урану и сделают его ещё больше. На практике же всё вышло совсем иначе. В ходе опытов, осуществляемых Лизой Мейтнер, уран распался на две составляющие — совершенно иные атомы бария. В результате освободилось некоторое число нейтронов. Если бы рядом с ними находились другие микрочастицы, они бы, в свою очередь, расщепили и их. И всё бы ничего, если бы данное столкновение и разделение не происходило с выделением колоссального количества энергии. Тогда-то и появилась идея положить этот принцип в основу действия самой страшной бомбы. Американец Роберт Оппенгей-мера стал «отцом» первой в мире атомной авиабомбы. 6 вгуста 1945 года это чудовищное оружие было сброшено на города Хиросиму и Нагасаки, и мир стал свидетелем одного из самых ужасных зрелищ за всю историю создания оружия. В результате этой жестокой операции в Хиросиме, по средним подсчётам, погибло более 140 000 тысяч граждан, а в Нагасаки — ещё 74 000 человек. Это данные о людях, скончавшихся во время взрыва, они не брали в расчёт тех, кто скончался, терзаемый лучевой болезнью. Этот прецедент со всей ясностью показал, насколько страшным является новое изобретение в неразумных и жестоких руках, чем может обернуться его применение. США были опьянены своим успехом, считая, что никто в мире больше не мог изобрести такое разрушительное оружие, что, естественно, давало им чувство превосходства. Тем не менее, поняв, чем грозит проигрыш в вооружении, СССР упорно делал всё возможное и невозможное, чтобы самостоятельно изобрести бомбу. Сперва урана катастрофически не хватало, но как только социалистический режим установился в части европейских стран, проблема исчезла. США не сомневались в том, что советские разработчики нагонят их никак не раньше, чем к середине пятидесятых, а это давало им веру в то, что к этому моменту они смогут разработать ещё более совершенную модификацию бомбы. Но они просчитались, атомная бомба появилась в Союзе уже в 1949 году. А в августе 1951 года в СССР отметили необходимость создания целых ядерных баз для хранения боеголовок. Гонка вооружений набирала безумный темп. После того, как рубеж с изобретением ядерного оружия был покорён, сверхдержавы принялись штурмовать новый. Теперь на повестке дня было термоядерное оружие. Первыми преуспели США 1 ноября 1952 года. Принцип работы этой бомбы был следующим: в ходе расщепления мелких ядер удавалось синтезировать более крупные — например, из двух ядер дейтерия одно ядро гелия. Всё это, как и прежде, происходило с выделением огромной энергии. Поскольку лёгкие элементы синтезировались в более тяжёлые, и разрушительная сила реакции была гораздо больше. Одно время бытовало мнение, что этот тип оружия «чище» ядерного, поскольку от него остаётся меньше радиоактивных отходов, чем от реакций деления. На практике же это оказалось не совсем так. Всё зависело от конкретных изотопов и материала, выбранного для бомб. Иной раз мощность взрыва была прямо пропорциональна количеству убивающих всё сущее отходов. Принцип действия ядерного оружия К ядерному оружию принято относить не только бомбы, но и различные ракеты, торпеды и снаряды. Энергия атомного ядра, задействованная при его работе, настолько колоссальна, что применение такого оружия даже в самых ограниченных масштабах грозит многочисленными смертями, заболеваниями лучевой болезнью и экологическими катастрофами. Самое страшное в этих боеголовках вовсе не то, что, взрываясь, они охватывают большую территорию и чрезвычайно мощны. Нет, они способны десятками лет отравлять всё живое радиацией, видоизменяя и калеча живые организмы. В целом данное вооружение можно разделить на три основных типа — непосредственно ядерное, термоядерное и нейтронное. Собственно ядерное оружие работает на основе деления ядер урана и плутония, которые быстро расщепляются на две части, выделяя энергию и образуя таким образом цепную реакцию. Чтобы реакция сработала, необходимо, чтобы ядра набрали критическую массу. Этого можно добиться двумя разными способами — путём сближения ядер урана и плутония во время взрыва (каждое из их полушарий не имеет достаточной массы и не может взорваться самостоятельно) либо же путём имплозии (когда взрыв имеет направление внутрь и увеличивает плотность веществ). Иными словами, сначала взрываются пороховые заряды, они, в свою очередь, вызывают сближение ядер урана и плутония, а те — цепную реакцию, высвобождающую разрушительную энергию. Термоядерный взрыв происходит в три этапа: первое деление — синтез веществ — второе деление. В отличие от ядерной бомбы, в основе термоядерного заряда лежат изотопы водорода и лития. Как только происходит взрыв урана и плутония, температура повышается до высочайших значений — вплоть до миллиона градусов, что ведёт к синтезу ядер гелия из водорода и лития. Данная реакция также протекает с выделением энергии, притом, до десяти раз превышающей выработанную в ходе деления изотопов урана. Чтобы понимать, насколько высокой должна быть температура для поддержания термоядерной реакции, достаточно привести в качестве примера солнечную энергию — ведь оно «светит» именно за счёт этого процесса. После синтеза происходит ещё один этап деления. Дело в том, что в результате второй стадии освобождаются тысячи быстрых нейтронов. Они бомбардируют атомы урана-238 и, в сущности, повторяют первый этап, выделяя еще больше энергии. Наличие третьего этапа в бомбе не всегда является обязательным. Некоторые из них ограничиваются только первым делением и синтезом, а отсек для урана-238 в боеприпасе отсутствует. И наконец, нейтронное оружие. Оно в своей работе сходно с термоядерным, но преследует другие цели. Особенность состоит в том, что плутония и изотопов водорода здесь гораздо меньше. Это обусловлено тем, что при его применении не должно быть крупного взрыва, не должно произойти разрушения инфраструктуры и строений. Эти заряды преследуют только одну цель — уничтожить людей гамма— и нейтронным излучением, которое вырабатывается в результате образования свободных нейтронов. Сейчас США особенно активно ведут заготовки именно этого подвида. Ужасы новой ядерной войны (Третья мировая) Одно время в военных стратегиях господствовала та, которая отдавала решающую роль ядерной войне. Притом, не просто массированному обстрелу противника новейшими боеголовками, но полному уничтожению его военных запасов. Иными словами, в таком сражении решающее значение играло то, кто первый нанесёт удар. Именно у этой страны предполагалось преимущество, поскольку она лишит оппонента значительной части припасов. Тем не менее, стратеги вовремя заметили, что ответный удар будет неминуем, и агрессору никак не удастся избежать возмездия, пусть даже в конечном счёте он и выиграет. Одна из самых пугающих теорий, связанная с этой войной, именуется ядерной зимой. Согласно ей, при выбросе в стратосферу такого объёма дыма, сажи, радиоактивных отходов, которые способны выработать сотни атомных бомб, температура на Земле снизится и упадёт до арктических значений. Обусловлено это тем, что отходы существенно затруднят проникание солнечных лучей на земную поверхность, будут отражать их. Ещё одна очевидная угроза, которой мы уже касались в этой статье — радиационное заражение. Результат радиации — образование свободных радикалов, которые могут проникать в клетки живых организмов, в водную среду. Они приводят к разрушению белков, разрывая нуклеиновые цепи. В связи с этим гибнут и мутируют ткани. Особенно губительна радиация для стволовых клеток, для эпителиальных и эмбриональных тканей. Как следствие — развитие лучевой болезни, которая может пожаром охватить весь организм и довести до летального исхода. Наконец, ещё одно страшнейшее последствие — экологическая катастрофа. Вымирание целых видов, природные катаклизмы, изменение климатических поясов. Одним из ярких примеров такого ужасного события может служить авария на Чернобыльской АЭС. А что, если подобный выброс охватит весь мир? В конце пятидесятых США выработали новую стратегию — так называемую идею ограниченной войны. Она подразумевала точные тактические удары ядерными боеголовками по важным военным объектам соперника. При этом города и мирное население бомбардировке не подлежали — их следовало устрашать, а не уничтожать. Существовала даже методика эскалационного контроля и доминирования, которая, с одной стороны, навязывала противнику такое же ведение ограниченной войны, а с другой — превосходство в вооружении. Договоры о запрещении ядерного оружия Несмотря на то что первая атомная бомба появилась ещё в середине сороковых годов прошлого века, запретить ядерное оружие было принято решение только в 2017 году. Тонкость подобного документа состоит в следующем: договор имеет массу юридических лазеек и не содержит конкретной инструкции по ликвидации ядерного оружия в странах — его обладателях. Переговоры по созданию схожего по направленности соглашения начались ещё в 2010 году, но очень долгое время не могли увенчаться успехом. На тот момент на официальной основе государств, обладающих значительными запасами атомных и термоядерных бомб, было всего пять — США, Россия, Китай, Великобритания и Франция. И они не поддержали инициативу о разработке единой противоядерной конвенции, поскольку в их планы не входило избавляться от своего главного средства защиты. Но остальные страны твёрдо решили не оставлять этот вопрос открытым, что подтверждают межправительственные конференции, проведённые в Норвегии, Австрии и Мексике в 2013 и 2014 годах. Тогда-то и была выработана примерная стратегия действий: переговорщики решили, что вводить запреты следует постепенно. В таком случае возможно, что, запрещая более опасные виды, получится в конечном счёте ликвидировать эту угрозу полностью. В 2015 году за разработку правовых норм и мер взялась Генассамблея ООН. Была поставлена масштабная задача — освободить мир от угрозы ядерной войны. Работа шла достаточно эффективно. Уже в 2016 году был вынесен на рассмотрение соответствующий доклад, а на 2017 назначены переговоры. В голосовании по первой версии договора принимало участие 177 государств. Из них 123 страны проголосовали за принятие договора, 38 возражали, а 16 воздержались от голосования. В конце декабря 2016 года предпринималось повторное голосование, результаты которого, в сущности, не сильно отклонились от первого: 113 — за, 35 — против, 13 — воздержались. Тогда-то и была подписана резолюция, утверждающая переговорный мандат. Согласно ей, в 2017 году будут проходить обсуждения существенных положений международного соглашения. Сами переговоры проходили в два этапа. Первый из них — с 27 по 31 марта 2017 года в городе Нью-Йорк. Здесь отметились 132 государства. Второй этап более долгий — с 15 июня по 7 июля 2017 года, но участников здесь было меньше — только 124 из 193, на тот момент состоящих в ООН. Этот предмет обсуждения был конкретизирован в целых двадцати пленарных заседаниях, которые окончились вынесением итогового текста на подписание сторон. Из 124 участников переговоров подавляющее большинство — 122 — поддержали итоговый вариант. Только Нидерланды проголосовали против, а Сингапур счёл нужным воздержаться. Примечательно и то, что 9 членов ООН, действительно обладавших самыми большими запасами активного предмета споров, воздержались не только от голосования, но и вообще от какого-либо участия в Конференции. Они полностью проигнорировали процесс согласования положений соглашения. Но были и более удачные договоры. Один из них — о нераспространении ядерного вооружения, который был открыт для подписания Москвой ещё 1 июля 1968 года, практически сразу после его одобрения Генассамблеей. СССР ратифицировал его 24 ноября 1969 года. Вступил он в силу уже в 1970 году. Направленность документа заключалась в том, что все его участники должны предотвратить дальнейшее расширение списка государств — владельцев «красной кнопки», грозящей международной безопасности. Те же, кто уже имеет подобное вооружение, обязуются сделать всё, чтобы ни в коем случае не применять его в ходе вооружённых конфликтов, не передавать технологию его изготовления в другие страны, не отдавать сами боеприпасы, не уступать контроль над ними никому другому. Соответственно, те, кто не имел такого сверхоружия, обязаны были не принимать его ни от кого извне, не разузнавать способы его производства, не перенимать контроль над ним. В конечном счёте соглашение подписали практически все государства мира, за исключением Китая, Израиля, Индии, Пакистана и КНДР.

Ядерная Бомба — История Создания и Первые Применения Атомного Оружия, Принцип Действия и Последствия Взрыва, Страны-владельцы

07.09.2019

Ядерное оружие — вооружение стратегического характера, способное решать глобальные задачи. Его применение сопряжено со страшными последствиями для всего человечества. Это делает атомную бомбу не только угрозой, но и оружием сдерживания.

Появление вооружения, способного поставить точку в развитии человечества, ознаменовало начало его новой эпохи. Вероятность глобального конфликта или новой мировой войны сведена к минимуму из-за возможности тотального уничтожения всей цивилизации.

Несмотря на подобные угрозы, ядерное оружие продолжает оставаться на вооружении ведущих стран мира. В определенной степени именно оно становится определяющим фактором международной дипломатии и геополитики.

История создания ядерной бомбы

«Малыш» и «Толстяк»«Малыш» и «Толстяк»

Макеты бомб «Малыш» и «Толстяк», сброшенных на японские города

Вопрос о том, кто изобрел ядерную бомбу, в истории не имеет однозначного ответа. Предпосылкой для работы над атомным оружием принято считать открытие радиоактивности урана. В 1896 году французский химик А. Беккерель открыл цепную реакцию данного элемента, положив начало разработкам в ядерной физике.

В следующее десятилетие были открыты альфа-, бета- и гамма-лучи, а также ряд радиоактивных изотопов некоторых химических элементов. Последовавшее открытие закона радиоактивного распада атома стало началом для изучения ядерной изометрии.

В декабре 1938 года немецкие физики О. Ган и Ф. Штрассман первыми смогли провести реакцию расщепления ядра в искусственных условиях. 24 апреля 1939 руководству Германии было доложено о вероятности создания нового мощного взрывчатого вещества.

Однако немецкая ядерная программа была обречена на провал. Несмотря на успешное продвижение ученых, страна ввиду войны постоянно испытывала трудности с ресурсами, особенно с поставками тяжелой воды. На поздних этапах, исследования замедлялись постоянными эвакуациями. 23 апреля 1945 разработки немецких ученых были захвачены в Хайгерлохе и вывезены в США.

США стали первой страной, выразившей заинтересованность в новом изобретении. В 1941 году на его разработку и создание были выделены значительные средства. Первые испытания прошли 16 июля 1945 года. Меньше, чем через месяц, США впервые применили ядерное оружие, сбросив две бомбы на Хиросиму и Нагасаки.

Собственные исследования в области ядерной физики в СССР велись с 1918 года. Комиссия по атомному ядру была создана в 1938 году при Академии наук. Однако с началом войны ее деятельность в данном направлении была приостановлена.

В 1943 году сведения о научных трудах в ядерной физике были получены советскими разведчиками из Англии. Были внедрены агенты в несколько исследовательских центров США. Добываемые ими сведения позволили ускорить разработку собственного ядерного оружия.

Изобретение советской атомной бомбы было возглавлено И. Курчатовым и Ю. Харитоном, они и считаются создателями советской атомной бомбы. Информация об этом стала толчком для подготовки США к упреждающей войне. В июле 1949 года был разработан план «Троян», по которому планировалась начать военные действия 1 января 1950 г.

Позже дата была перенесена на начало 1957 с учетом того, чтобы все страны НАТО могли подготовиться и включиться в войну. По данным западной разведки, испытание ядерного оружия в СССР могло быть проведено не раньше 1954 года.

Однако о подготовке США к войне стало известно заранее, что заставило советских ученых ускорить исследования. В короткие сроки они изобретают и создают собственную ядерную бомбу. 29 августа 1949 г. в Семипалатинске на полигоне испытана первая советская атомная бомба РДС-1 (реактивный двигатель специальный).

Подобные испытания сорвали план «Троян». С этого момента США перестали обладать монополией на ядерное оружие. Вне зависимости от силы упреждающего удара, оставался риск ответных действий, что грозило катастрофой. С этого момента самое страшное оружие стало гарантом мира между великими державами.

Принцип работы

Схема «Малыша»Схема «Малыша»

Принцип действия – объединение зарядов для создания критической массы и последующей цепной реакции

Принцип работы атомной бомбы основан на цепной реакции распада тяжелых ядер или термоядерном синтезе легких. В ходе данных процессов выделяется огромное количество энергии, которая и превращает бомбу в оружие массового поражения.

Принцип взрыва ядерной бомбы имеет несколько поражающих факторов:

  • световая вспышка;
  • радиоактивное заражение;
  • ударная волна;
  • проникающая радиация;
  • электромагнитный импульс.

Световая вспышка, сопровождаемая тепловым излучением, образуется первой. Ее мощность значительно превышает силу солнечных лучей, что делает взрыв опасным на расстоянии нескольких километров от эпицентра.

Опасность представляет и радиация: в течение минуты ее проникающая способность самая высокая. В дальнейшем она вызывает лучевую болезнь у людей и животных.

Ударная волна имеет высокую степень поражения на расстоянии в несколько сотен метров от эпицентра. В данном радиусе не остается ничего живого или целого. По мере удаления от центра, снижается и степень повреждений.

Электромагнитный импульс (ЭМИ) — самое «безобидное» следствие ядерного взрыва, приводит к отключению электроники. Вред живым организмам наносит в случае их зависимости от электронных аппаратов. При этом ламповая и фотонная аппаратура имеет хорошую устойчивость к ЭМИ.

Первые испытания бомбы

Взрыв атомной бомбыВзрыв атомной бомбы

Испытание атомной бомбы, взрыв

Ядерная программа США получила название «Манхэттенский проект». Действовать начала с 17 сентября 1943 года. Первые испытания атомной бомбы в рамках данной программы прошли 16 июля 1945 года под кодовым названием «Тринити».

29 августа 1949 года изобретатели советской атомной бомбы Ю. Харитон и И. Курчатов успешно провели испытания РДС-1. Первые боеголовки были экспериментальными, без средств доставки. Однако самого факта их наличия хватило, чтобы предотвратить Третью мировую войну.

24 сентября 1951 года были проведены испытания РДС-2. Их уже можно было доставить до точек запуска так, чтобы они доставали до США. 18 октября была испытана РДС-3, доставляемая бомбардировщиком.

Дальнейшие испытания перешли к термоядерному синтезу. Первые испытания подобной бомбы в США прошли 1 ноября 1952 года. В СССР такая боеголовка была испытана уже через 8 месяцев.

ТХ ядерной бомбы

Схема РДС-1Схема РДС-1

Схема РДС-1

Ядерные бомбы не имеют четких характеристик ввиду разнообразия применения подобных боеприпасов. Однако существует ряд общих аспектов, обязательно учитываемых при создании данного оружия.

К таковым относят:

  • осесимметричное строение бомбы — все блоки и системы размещаются попарно в контейнерах цилиндрической, сфероцилиндрической или конической формы;
  • при проектировании сокращают массу ядерной бомбы за счет объединения силовых узлов, выбора оптимальной формы оболочек и отсеков, а также применения более прочных материалов;
  • минимизируют количество проводов и разъемов, а для передачи воздействия применяют пневмопровод или взрыводетанирующий шнур;
  • блокировка основных узлов осуществляется с помощью перегородок, разрушаемых пирозарядами;
  • активные вещества закачиваются с помощью отдельного контейнера или внешнего носителя.

С учетом требований к устройству, ядерная бомба состоит из следующих комплектующих:

  • корпус, обеспечивающий защиту боеприпаса от физического и теплового воздействия — разделен на отсеки, может комплектоваться силовой рамой;
  • ядерный заряд с силовым креплением;
  • система самоликвидации с ее интеграцией в ядерный заряд;
  • источник питания, рассчитанный на длительное хранение —приводится в действие уже при запуске ракеты;
  • внешние датчики — для сбора информации;
  • системы взведения, управления и подрыва, последняя внедрена в заряд;
  • системы диагностики, подогрева и поддержания микроклимата внутри герметичных отсеков.

В зависимости от типа ядерной бомбы, в нее интегрируют и другие системы. Среди таких может быть датчик полета, пульт блокировки, расчет полетных опций, автопилот. В некоторых боеприпасах применяются и постановщики помех, рассчитанные на снижение противодействия ядерной бомбе.

Последствия применения такой бомбы

Нагасаки после атомного взрываНагасаки после атомного взрыва

Разрушения в Нагасаки после атомной бомбардировки

«Идеальные» последствия применения ядерного оружия были зафиксированы уже при сбросе бомбы на Хиросиму. Заряд взорвался на высоте 200 метров, что вызвало сильную ударную волну. Во многих домах были опрокинуты печки, отапливаемые углем, что привело к пожарам даже за пределами зоны поражения.

За световой вспышкой пошел тепловой удар, длившийся считаные секунды. Однако его мощности хватило, чтобы в радиусе 4 км расплавить черепицу и кварц, а также распылить телеграфные столбы.

За тепловой волной последовала ударная. Скорость ветра достигала 800 км/ч, его порыв разрушил практически все постройки в городе. Из 76 тыс. зданий, частично уцелело около 6 тыс., остальные были разрушены полностью.

Тепловая волна, а также поднявшийся пар и пепел вызвали сильный конденсат в атмосфере. Через несколько минут пошел дождь с черными от пепла каплями. Их попадание на кожу вызывало сильные неизлечимые ожоги.

Люди, находившиеся в пределах 800 метров от эпицентра взрыва, были сожжены в пыль. Оставшиеся подверглись воздействию радиации и лучевой болезни. Ее признаками стали слабость, тошнота, рвота, лихорадка. В крови наблюдалось резкое снижение количества белых телец.

За секунды было убито около 70 тыс. человек. Еще столько же впоследствии погибло от полученных ран и ожогов.

Через 3 дня еще одна бомба была сброшена на Нагасаки с аналогичными последствиями.

Запасы ядерного оружия в мире

Запасы ядерного оружия в миреЗапасы ядерного оружия в мире

Запасы ядерного оружия в мире

Основные запасы ядерного оружия сосредоточены у России и США. Помимо них, атомные бомбы есть у следующих стран:

  • Великобритания — с 1952 года;
  • Франция — с 1960;
  • Китай — с 1964;
  • Индия — с 1974;
  • Пакистан — с 1998;
  • КНДР — с 2008.

Ядерным оружием обладает и Израиль, хотя официального подтверждения от руководства страны так и не поступало.

Бомбы США есть на территории стран, входящих в состав НАТО: Германия, Бельгия, Нидерланды, Италия, Турция и Канада. Они есть и у союзников США — Японии и Южной Кореи, хотя официально страны отказались от расположения ядерного оружия на своей территории.

После распада СССР ядерное оружие непродолжительное время было у Украины, Казахстана и Белоруссии. Однако позже оно было передано России, что сделало ее единственной наследницей СССР по части ядерного вооружения.

Количество атомных бомб в мире менялось на протяжении второй половины XX — начала XXI века:

  • 1947 — 32 боеголовки, все у США;
  • 1952 — около тысячи бомб у США и 50 — у СССР;
  • 1957 — более 7 тыс. боеголовок, ядерное оружие появляется у Великобритании;
  • 1967 — 30 тыс. бомб, включая вооружение Франции и Китая;
  • 1977 — 50 тыс., включая боеголовки Индии;
  • 1987 — около 63 тыс., — наибольшая концентрация ядерного вооружения;
  • 1992 — менее 40 тыс. боеголовок;
  • 2010 — около 20 тыс.;
  • 2018 — около 15 тыс.

Следует учитывать, что в данные подсчеты не включается тактическое ядерное оружие. Таковое обладает меньшей степенью поражения и разнообразие в носителях и применении. Значительные запасы подобного оружия сосредоточены у России и США.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

С друзьями поделились:

принцип действия, как работает, история создания, конструкция, устройство, кто изобрёл

За 50 лет, начиная с открытия ядерного деления в начале 20 века до 1957 года прогремели десятки атомных взрывов. Благодаря им ученые получили особо ценные знания о физических принципах и модели деления атомов. Стало ясно, что наращивать бесконечно мощность атомного заряда нельзя из-за физических и гидродинамических ограничений к урановой сфере внутри боезаряда.

Поэтому был разработан другой тип ядерного оружия – нейтронная бомба. Главным поражающим фактором при ее взрыве является не взрывная волна и радиация, а нейтронное излучение, которое с легкостью поражает живую силу противника, оставляя в сохранности технику, строения и вообще всю инфраструктуру.

История создания

Впервые о создании нового оружия задумались в Германии в 1938 году, после того, как два физика Ган и Штрассман произвели расщепление атома урана искусственным путем.Годом позже началось строительство первого реактора в окрестностях Берлина, для которого было закуплено несколько тонн урановой руды.С 1939 года в связи с началом войны все работы по атомному оружию засекречиваются. Программа получает название «Урановый проект».

"Толстяк" бомба«Толстяк»

В 1944 году группа Гейзенберга изготовила урановые плиты для реактора. Планировалось, что эксперименты по созданию искусственной цепной реакции начнутся в начале 1945. Но из-за переноса реактора из Берлина в Хайгерлох график опытов сместился на март. Согласно проведенному эксперименту, реакция деления в установке не началась, т.к. массы урана и тяжелой воды была ниже необходимого значения (1,5т урана при потребности в 2,5т).

В апреле 1945 года Хайгерлох заняли американцы. Реактор был разобран и с оставшимся сырьем вывезен в США.В Америке атомная программа получила название «Манхэттенский проект». Его руководителем стал физик Оппенгеймер совместно с генералом Гровсом. В их группу входили также немецкие ученые Бор, Фриш, Фукс, Теллер, Блох, уехавшие или эвакуированные из Германии.

Итогом их труда стала разработка двух бомб с использованием урана и плутония.

Плутониевый боезаряд, выполненный в виде авиабомбы («Толстяк») был сброшен на Нагасаки 9 августа 1945 года. Урановая бомба пушечного типа («Малыш») испытаний на полигоне в Нью-Мехико не проходила и была сброшена на Хиросиму 6 августа 1945 года.

Малыш бомба«Малыш»

Работы над созданием своего атомного оружия в СССР начали проводиться с 1943 года. Советская разведка доложила Сталину о разработках в нацисткой Германии сверхмощного оружия, способного изменить ход войны. Также в докладе содержались сведения, что кроме Германии работы над атомной бомбой проводились и в странах союзниках.

Для ускорения работ по созданию атомного оружияразведчиками был завербован физик Фукс, участвовавший в то время в «Манхэттенском проекте». Также в Союз были вывезены ведущие немецкие физики Арденне, Штейнбек,Риль связанные с «урановым проектом» в Германии. В 1949 году на полигоне в Семипалатинской области Казахстана произошло успешное испытание советской бомбы РДС-1.

Пределом мощности атомной бомбы считается 100 кт.

Наращивание количества урана в заряде приводит к его срабатыванию лишь только достигается критическая масса. Ученые пробовали решить данную проблему путем создания различных компоновок, разделяя уран на множество частей (в виде раскрытого апельсина) которые соединялись воедино при взрыве. Но это не позволило существенно увеличить мощность.В отличие от атомной бомбы топливо для термоядерного синтеза не имеет критической массы.

Первой предложенной конструкцией водородной бомбы стал «классический супер», разработанный Теллером в 1945 году. По сути это была та же атомная бомба, внутри которой поместили цилиндрический контейнер с дейтериевой смесью.

Ученым из СССР Сахаровым осенью 1948 года создана принципиально новая схема водородной бомбы – «слойка». В ней в качестве взрывателя использовался уран-238 вместо урана-235 (изотоп U-238 является отходом при производстве изотопа U-235), источником трития и дейтерия одновременно стал дейтрид лития.

Бомба состояла из множества слоев урана и дейтрида.Первую термоядерную бомбу РДС-37 мощностью 1,7 Мт взорвали на Семипалатинском полигоне в ноябре 1955 года. Впоследствии ее конструкция с небольшими изменениями стала классической.

Нейтронная бомба

В 50-х годах 20 столетия военная доктрина НАТО в ведении войны опиралась на использование тактического ядерного оружия низкой мощности для сдерживания танковых войск государств Варшавского договора. Однако в условиях высокой плотности населения в районе западной Европы применение этого типа оружия могло привести к таким людским и территориальным потерям (радиоактивное загрязнение), что преимущества, полученные от его использования, становились ничтожными.

Тогда учеными США была предложена идея о ядерной бомбе со сниженными побочными эффектами. В качестве поражающего фактора в новом поколении оружия решили использовать нейтронное излучение, проникающая способность которого превосходила гамма-излучение в несколько раз.

В 1957 году Теллер возглавил группу исследователей, выполняющих разработку нейтронной бомбы нового поколения.

Первый взрыв нейтронного оружия под индексом W-63 произошел в 1963 году в одной из шахт на полигоне в Неваде. Но мощность излучения была гораздо ниже запланированной, и проект отправили на доработку.

В 1976 году на том же самом полигоне были выполнены испытания обновленного нейтронного заряда. Результаты испытаний настолько превзошли все ожидания военных, что решение о серийном производстве данного боеприпаса приняли за пару дней на самом высоком уровне.

Ракета «Ланс»Ракета «Ланс»

Начиная с середины 1981 года, в США разворачивается полномасштабный выпуск нейтронных зарядов. За короткий промежуток времени было собрано 2000 снарядов для гаубиц и более 800 ракет «Ланс».

Конструкция и принцип действия нейтронной бомбы

Нейтронная бомба – это вид тактического ядерного оружия мощностью от 1 до 10 кт, где поражающим фактором является поток нейтронного излучения. При ее взрыве 25% энергии выделяется в виде быстрых нейтронов (1-14 МэВ), остальная часть расходуется на образование ударной волны и светового излучения.

По своей конструкции нейтронную бомбу можно условно разделить на несколько типов.

К первому типу относятся маломощные (до 1 кт) заряды весом до 50 кг, которые используются в качестве боеприпасов к безоткатному или артиллерийскому орудию («Дэви Крокет»). В центральной части бомбы располагается полый шар из делящегося вещества. Внутри его полости находится «бустинг», состоящий из дейтерий-тритиевой смеси, усиливающий деление. Снаружи шар экранирован бериллиевым отражателем нейтронов.

Реакция термоядерного синтеза в таком снаряде запускается разогревом действующего вещества до миллиона градусов путем подрыва атомной взрывчатки, внутри которой помещен шар. При этом испускаются быстрые нейтроны с энергией 1-2 МэВ и гамма-кванты.

Нейтронная бомба пушечного типа схема

Второй тип нейтронного заряда используется в основном в крылатых ракетах или авиабомбах. По своей конструкции он не сильно отличается от «Дэви Крокета». Шар с «бустингом» вместо бериллиевого отражателя окружен небольшим слоем из дейтерий-тритиевой смеси.

Также существует и другой тип конструкции, когда дейтерий-тритиевая смесь выведена наружу атомной взрывчатки. При взрыве заряда запускается термоядерная реакция с выделением нейтронов высокой энергии 14 МэВ, проникающая способность которых выше, чем у нейтронов, образующихся при ядерном делении.

Ионизирующая способность нейтронов с энергией 14МэВ в семь раз выше, чем у гамма-излучения.

Т.е. поглощенный живыми тканями нейтронный поток в 10 рад соответствует полученной дозе гамма-излучения в 70 рад. Объяснить это можно тем, что при попадании в клетку нейтрон выбивает ядра атомов и запускает процесс разрушения молекулярных связей с образованием свободных радикалов (ионизация). Почти сразу радикалы начинают хаотично вступать в химические реакции, нарушая работу биологических систем организма.

Еще одним поражающим фактором при взрыве нейтронной бомбы является наведенная радиоактивность. Возникает при воздействии нейтронного излучения на почву, строения, военную технику, различные объекты в зоне взрыва. При захвате нейтронов веществом (особенно металлами) происходит частичное преобразование стабильных ядер в радиоактивные изотопы (активация). Они в течении некоторого времени испускают собственное ядерное излучение, которое также становится опасным для живой силы противника.

Устройство нейтронной бомбы

Из-за этого боевая техника, орудия, танки, подвергшиеся излучению, не могут быть использованы по назначению от пары дней до нескольких лет. Вот почему остро встала проблема по созданию защиты экипажа техники от нейтронного потока.

Увеличение толщины брони военной техники почти не влияет на проникающую способность нейтронов. Улучшение защиты экипажа удалось достичь путем использования в конструкции брони многослойных поглощающих покрытий на основе соединений бора, установкой алюминиевого подбоя с водородосодержащим слоем пенополиуретана, а также изготовлением брони из хорошо очищенных металлов или металлов, которые при облучении не создают наведенную радиоактивность (марганец, молибден, цирконий, свинец, обедненный уран).

Нейтронная бомба имеет один серьезный недостаток – малый радиус поражения, из-за рассеивания нейтронов атомами газов земной атмосферы.

Но нейтронные заряды полезны в ближнем космосе. В связи с отсутствием там воздуха нейтронный поток распространяется на большие расстояния. Т.е. данный тип оружия является эффективным средством ПРО.

Так, при взаимодействии нейтронов с материалом корпуса ракеты создается наведенная радиация, которая приводит к повреждению электронной начинки ракеты, а также к частичной детонации атомного запала с началом реакции деления. Выделяющееся радиоактивное излучение позволяет демаскировать боеголовку, отсеяв ложные цели.

Запуск нейтронной бомбы

Закатом нейтронного оружия стал 1992 год. В СССР, а затем и России был разработан гениальный по своей простоте и эффективности способ защиты ракет – в состав материала корпуса ввели бор и обедненный уран. Поражающий фактор нейтронного излучения оказался бесполезен для вывода из строя ракетного вооружения.

Политические и исторические последствия

Работы по созданию нейтронного оружия начались в 60-ых годах 20 века в США. Через 15 лет технологию производства доработали и создали первый в мире нейтронный заряд, что привело к своеобразной гонке вооружений. На данный момент такой технологией обладают Россия и Франция.

Главной опасностью этого типа оружия при его применении стала не возможность массового уничтожение мирного населения страны противника, а размытие грани между ядерной войной и обычным локальным конфликтом. Поэтому Генеральной Ассамблеей ООН было принято несколько резолюций с призывом к полному запрету нейтронного оружия.

СССР в 1978 году первым предложил США договориться об использовании нейтронных зарядов и разработал проект об их запрещении.

К сожалению, проект остался только на бумаге, т.к. ни одна страна запада и США не приняли его.

Позже, в 1991 году президентами России и США были подписаны обязательства, по которым тактические ракеты и артиллерийские снаряды с нейтронной боеголовкой должны быть полностью уничтожены. Что несомненно не помешает наладить их массовый выпуск за короткое время при изменении военно-политической ситуации в мире.

Видео

Ядерное оружие, как средство массового поражения

О ядерном оружии кратко

«Yadernoe oruzhie»


 

Содержание статьи:

  • Принцип действия
  • Кратко ядерном взрыве
  • Ядерные заряды: их виды
  • Ядерный взрыв: его поражающий фактор
  • Ядерное оружие, как угроза уничтожения человечества

 

Если подходить к определению кратко, то ядерное (или по другому, атомное) оружие, включает в свое определение наличие ядерных боеголовок и возможностей их транспортировки и управления.

Я́дерное ору́жие находится в списке оружия массового поражения.

 

Принцип действия

Ядерное оружие (yadernoe oruzhie), точнее принцип его действия заключается в ядерной энергии. Происходит цепная реакция, впоследствии, которой, тяжелые ядра делятся. В другом случае происходит синтез легких ядер, при помощи термоядерной реакции. Если мгновенно высвобождается огромное количество внутриядерной энергии, но в ограниченном объеме, то взрывная реакция. Визуальный центр взрывной реакции можно определить по огненному шару. Ядерное оружие, как средство массового поражения

Кратко ядерном взрыве

Ядерный взрыв может вызвать сейсмические колебания, если происходит на поверхности земли или около нее. Это похоже на землетрясение, но радиус распространения в районе нескольких сот метров. Взрыв ведет за собой высвобождение энергии, которая преобразуется в яркий свет и тепло. Если находится в эпицентре взрыва, то есть в радиусе распространения ядерной реакции, то люди получают ожоги, а горючие вещества воспламеняются.
Радиус действия распространяется на километры. При последствиях применения ядерного оружия, возникает Ионизирующее излучение, кратко – радиация. Ее действие длится примерно минуту. Так как радиация имеет огромную проникающую способность, нахождение в радиусе ее действия очень опасно для здоровья. Для того, чтобы не попасть под ее действие, требуется надежное укрытие.

 
Ядерные заряды: их виды


•    Атомный. Такой вид заряд предполагает деление ядер тяжелых металлов, таких как уран-235 (или же уран 233), плутоний-239. Взрыв атомного заряда характеризуется ядерной реакцией одного вида.


•    Термоядерный. Специфика этого заряда в том, что происходит синтез более легких элементов, в тяжелые. Реакция наступает во время взрыва, под действием колоссально высокой температуры. Как горючее пользуются дейтридом лития-6.


•    Нейтронный заряд характеризуется очень высоким нейтронным излучением. В то же время, мощность остается мала. В этом случае ставка делается на увеличенное распространение радиации и соответственно, большей губительной для всего живого силы. Любая техника тоже пострадает при взрыве этого заряда. США первые разработали технологию по созданию нейтронного заряда. Сейчас создать его могут и Россия с Францией.

 


Ядерный взрыв: его поражающий фактор


В современном мире, ядерное оружие представляется одним из опаснейших видов оружия, за счет своих масштабных поражающий факторов.


•    Ударная волна. По большей части именно ударная волна обладает наиболее сильным поражающим свойством.

  • Происхождение ударной волны оружия, соответствует обычному взрыву.
  • Однако сила разрушения много сильнее. Помимо самой разрушающей ударной волны, объекты находящиеся в зоне ее воздействия, могут быть уничтожены летящими осколками или предметами находившимися ближе к центру взрыва.
  • Соответственно разрушительная сила ядерного взрыва в населенных пунктах или лесистой местности будет в разы сильнее, чем на открытом пространстве. Человеку защититься от ударной волны можно в укрытиях предназначенных именно для этого или же использовать рельеф местности и естественные укрытия.
  • Здания от ядерного взрыва могут пострадать как не значительно, так и до полного разрушения. Ударную волну сравнивают с водой, так как она способна проникнуть в помещение через малейшее отверстие, руша на своем пути перегородки внутри здания.


•    Световое излучение. Оно включает в себя видимое, инфракрасное и ультрафиолетовое излучения.

  • При накаливании воздухи и высокой температуре продуктов взрыва и получается этот поражающий фактор. При взрыве, яркость светового излучения в разы превышает по яркости солнечный свет.
  • Та область, которая находилась в зоне светового излучения, может раскаляться до 10 000 °С. На сколько долго будет действовать световое излучение, можно судить только по мощности ядерного взрыва. Поражающий фактор заключается в высоких температурах, воздействующих на все окружающее.
  • Таким образом, ядерный взрыв может стать причиной пожаров, расплавления техники, а для человека сильнейшими ожогами вплоть до полного обугливания.
  • При ядерном взрыве человеку необходимо скрыть открытые части кожного покрова и ни в коем случае не смотреть в сторону взрыва.
  • Световое излучение более губительно при взрыве ядерного оружия в воздухе, нежели на поверхности земли.
  • При плохих погодных условиях (дождь, снег, туман), поражающая способность светового излучения в разы уменьшается. Укрытием от светового излучения может послужить обычная тень от чего либо.


•    Проникающая радиация. При ядерном взрыве под землей или под водой, проникающая способность радиации заметно уменьшается. В воздухе же, радиация распространяется стремительно.

  • Радиация, по своей губительной силе превосходит вышеперечисленные поражающие факторы. Но радиус распространения радиации, даже при мощнейшем взрыве составляет несколько километров.
  • Поражающее действие на живые организмы происходит путем влияния на жизненно важные органы, точнее на их функцию. Пораженные радиацией люди или животные заболевают лучевой болезнью.
  • Действие радиации, вызванное ядерным взрывом, длится несколько секунд. Укрыться от такого поражающего фактора можно при помощи толстых материалов, которые способны задержать радиоактивное излучение. Например, слой стали способен погасить силу радиации в два раза.
  • Укрыться можно за бетонными сооружениями, под землей, в воде, за толстым деревом или же под снегом (в этом случае нужен толстый слой не менее полуметра).


•    Радиоактивное заражение. Такому виду заражения подвергаются как живые организмы, так и разнообразные не живые объекты.


•    Электромагнитный импульс, возникающий в атмосфере, не воздействует на человека. Действие оказывается на проводники для токов и напряжений разного характера. Следствием этого импульса, является повреждение приборов связанных с радиотехникой и током.
 Ядерное оружие: его разновидности
Ядерный потенциал применяется в разных целях. И уже отталкиваясь от целей, оружие подразделяется на несколько видов взрывов.


•    Взрыв высоко в воздухе, называется воздушным, за счет взрыва ядерной боеголовки, может быть высоким и низким. Таким образом, взрыв происходит таким образом, чтобы область излучения света не доходила до земли или поверхности воды. При взрывах в низких слоях атмосферы происходит радиоактивное заражение всего окружающего. Оно не является значительным, даже для живых организмов. Остальные же поражающие факторы действуют на максимум.


•    Еще один вид взрыва в воздухе-высотный. Он применяется для уничтожения ракет или самолетов. При использовании для наземных объектов он безопасен. Здесь самыми разрушительными являются все поражающие факторы, кроме радиоактивного заражения.


•    Наземный или надводный ядерный взрыв производится на поверхности воды/земли. Так же он может производиться не высоко над этими поверхностями. Наземным или надводным может считаться тот, при котором световое излучение касается той или иной поверхности. Сильнейшим поражающим фактором, представлено заражение радиацией поверхности, на которой происходит взрыв. Остальные разрушительные факторы так же имеют место быть.


•    Последний тип ядерного взрыва, проводятся или под землей, или под водой. Главный фактор поражения это образование сейсмовзрывных волн. Грунт заражается радиацией. Но отсутствует поражающий фактор проникновения радиации и световое излучение.

 


Ядерное оружие, как угроза уничтожения человечества


Использование ядерных боеголовок случилось в конце второй мировой войны против фашистской Германии. Тогда пострадали города Хиросима и Нагасаки. Ядерная бомбардировка была произведена со стороны Вооруженных сил США. Такие меры, были продиктованы скорейшим подписанием капитуляции Японии. Результаты взрыва были катастрофическими. Люди, находившиеся в эпицентре взрыва, превратились в уголь. Птицы сгорали в полете. Взрывной волной выбивало стекла, которые и стали причиной гибели большинства народа.

 Здания обрушивались. Возникло много небольших пожаров, которые впоследствии переросли в один большой. Те, кто остался жив после взрыва, и его разрушительных факторов, впоследствии, стали умирать от радиоактивного заражения.


Последствия ядерного взрыва аукнулось и в будущем. Люди еще на протяжении многих лет умирали от рака и прочих болезней. Если применить огромный по своим масштабам ядерный взрыв, то его последствием станут колоссальные пожару, которые охватили бы леса и города. От этого к стратосфере стремилось бы большое количество дыма. Солнечная радиация перестала бы проходить к поверхности земли. Такое явление именуется «Ядерной зимой».


Опасность его заключается в уничтожении озонового слоя Земного шара. Прямые ультрафиолетовые лучи, не задерживаемые озоновым слоем, стали бы губительными для всего живого. Вот такие не радостные перспективы ожидают человечество при масштабном использовании ядерного оружия.


После печальных событий в японских городах, стали вестись разработки водородной бомбы. Настало время гонки вооружений. Страны хотели иметь оружие, более мощное, чем у стран соперников. Гонка вооружений продолжалась до тех пор, пока не возникла угроза ядерной войны. Сегодня угроза ядерной войны тормозится разоружением имеющегося арсенала. Но ядерный потенциал имеет место быть в ряде современных государств. Так же, на сегодняшний день конвенция ООН запретила применение ядерного оружия в мире.

ЯДЕРНОЕ ОРУЖИЕ — Большая Медицинская Энциклопедия

ЯДЕРНОЕ ОРУЖИЕ (устаревшее атомное оружие) — оружие массового поражения взрывного действия, основанное на использовании внутриядерной энергии. Источником энергии являются либо ядерная реакция деления тяжелых ядер (например, урана-233 или урана-235, плутония-239), либо термоядерная реакция синтеза легких ядер (см. Ядерные реакции).

Разработка ядерного оружия началась в начале 40-х годов 20 века одновременно в нескольких странах, после того как были получены научные данные о возможности цепной реакции деления урана, сопровождающейся выделением огромного количества энергии. Под руководством итальянского физика Ферми (Е. Fermi) в 1942 году в США был сконструирован и пущен первый ядерный реактор. Группа американских ученых во главе с Оппенгеймером (R. Oppenheimer) в 1945 г. создала и испытала первую атомную бомбу.

В СССР научными разработками в этой области руководил И. В. Курчатов. Первое испытание атомной бомбы проведено в 1949 году, а термоядерной — в 1953 году.

Ядерное оружие включает ядерные боеприпасы (боевые части ракет, авиационные бомбы, артиллерийские снаряды, мины, фугасы, снаряженные ядерными зарядами), средства доставки их к цели (ракеты, торпеды, самолеты), а также различные средства управления, обеспечивающие попадание боеприпаса в цель. В зависимости от типа заряда принято различать ядерное, термоядерное, нейтронное оружие. Мощность ядерного боеприпаса оценивается тротиловым эквивалентом, который может составлять от нескольких десятков тонн до нескольких десятков миллионов тонн тротила.

Ядерные взрывы могут быть воздушными, наземными, подземными, надводными, подводными и высотными. Они различаются по расположению центра взрыва относительно земной или водной поверхности и имеют свои специфические особенности. При взрыве в атмосфере на высоте менее 30 тысяч метров на ударную волну расходуется около 50% энергии, а на световое излучение — 35% энергии. С увеличением высоты взрыва (при меньшей плотности атмосферы) доля энергии, приходящаяся на ударную волну, уменьшается, а световое излучение увеличивается. При наземном взрыве световое излучение уменьшается, а при подземном — может даже отсутствовать. При этом энергия взрыва приходится на проникающую радиацию, радиоактивное заражение и электромагнитный импульс.

Воздушный ядерный взрыв характеризуется возникновением светящейся области сферической формы — так называемого огненного шара. В результате расширения газов в огненном шаре образуется ударная волна, которая распространяется во все стороны со сверхзвуковой скоростью. При прохождении ударной волны по местности со сложным рельефом возможно как усиление, так и ослабление ее действия. Световое излучение испускается в период свечения огненного шара и распространяется со скоростью света на большие расстояния. Оно в достаточной степени задерживается любыми непрозрачными предметами. Первичная проникающая радиация (нейтроны и гамма-лучи) оказывает поражающее действие в течение примерно 1 секунда с момента взрыва; она слабо поглощается экранирующими материалами. Однако ее интенсивность довольно быстро снижается с увеличением расстояния от центра взрыва. Остаточное радиоактивное излучение — продукты ядерного взрыва (ПЯВ),представляющие собой смесь более чем 200 изотопов 36 элементов с периодом полураспада от долей секунды до миллионов лет, разносятся по планете на тысячи километров (глобальные выпадения). При взрывах ядерных боеприпасов малой мощности наиболее выраженным поражающим эффектом обладает первичная проникающая радиация. С увеличением мощности ядерного заряда доля гамма-нейтронного излучения в поражающем действии факторов взрыва снижается за счет более интенсивного действия ударной волны и светового излучения.

При наземном ядерном взрыве огненный шар касается поверхности земли. В этом случае тысячи тонн испарившегося грунта вовлекаются в область огненного шара. В эпицентре взрыва возникает воронка, окруженная оплавленным грунтом. Из образующегося грибовидного облака около половины ПЯВ осаждается на поверхность земли по направлению ветра, в результате чего появляется так наз. радиоактивный след, который может достигать нескольких сотен и тысяч квадратных километров. Остальные радиоактивные вещества, находящиеся главным образом в высоко дисперсном состоянии, уносятся в верхние слои атмосферы и выпадают на землю так же, как и при воздушном взрыве. При подземном ядерном взрыве грунт либо не выбрасывается (камуфлетный взрыв), либо частично выбрасывается наружу с образованием воронки. Выделяющаяся энергия поглощается грунтом вблизи центра взрыва, в результате чего создаются сейсмические волны. При подводном ядерном взрыве образуется огромный газовый пузырь и водяной столб (султан), увенчанный радиоактивным облаком. Взрыв завершается образованием базисной волны и серией гравитационных волн. Одним из важнейших последствий высотного ядерного взрыва является образование под влиянием рентгеновского, гамма-излучения и нейтронного излучения обширных областей повышенной ионизации верхних слоев атмосферы.

Таким образом, ядерное оружие представляет собой качественно новое оружие,намного превосходящее по поражающему действию известное ранее. На завершающем этапе второй мировой войны США применили ядерное оружие, сбросив ядерные бомбы на японские города Хиросиму и Нагасаки. Результатом этого были сильные разрушения (в Хиросиме из 75 тысяч зданий было разрушено или значительно повреждено приблизительно 60 тысяч, а в Нагасаки из 52 тысяч— более 19 тысяч), пожары, особенно в районах с деревянными строениями, огромное количество человеческих жертв (см. таблицу). При этом чем ближе люди находились к эпицентру взрыва, тем чаще возникали поражения и тем тяжелее они были. Так, в радиусе до 1 км абсолютное большинство людей получили различные по характеру повреждения, закончившиеся преимущественно смертельным исходом, а в радиусе от 2,5 до 5 км поражения в основном были нетяжелые. В структуре санитарных потерь отмечались повреждения, вызванные как изолированным, так и сочетанным воздействием поражающих факторов взрыва.

Таблица

КОЛИЧЕСТВО ПОРАЖЕННЫХ В ХИРОСИМЕ И НАГАСАКИ (по материалам книги «Действие атомной бомбы в Японии», М., 1960)

Город

Численность населения

Общее

число

поражен

ных

Из них погибло

Выжило

всего

в первый день

в последующем

Хиросима

255 000

136 000

64 000

45 000

19 000

72 000

Нагасаки

174 000

64 000

39 000

22 000

17 000

25 000


Поражающее действие воздушной ударной волны определяется гл. обр. максимальным избыточным давлением во фронте волны и скоростным напором. Избыточное давление 0,14—0,28 кг/см2 обычно вызывает легкие, а 2,4 кг/см2 — серьезные травмы. Повреждения от непосредственного воздействия ударной волны относят к первичным. Они характеризуются признаками коммоционно-контузионного синдрома, закрытой травмы головного мозга, органов груди и живота. Вторичные повреждения возникают вследствие обвала строений, воздействия летящих камней, стекла (вторичные снаряды) и др. Характер таких травм зависит от ударной скорости, массы, плотности, формы и угла соприкосновения вторичного снаряда с телом человека. Выделяют и третичные повреждения, которые являются результатом метательного действия ударной волны. Вторичные и третичные повреждения могут быть самыми разнообразными, так же как повреждения при падении с высоты, транспортных авариях и других несчастных случаях.

Световое излучение ядерного взрыва — электромагнитное излучение в ультрафиолетовом, видимом и инфракрасном спектре — протекает в две фазы. В первую фазу, продолжающуюся тысячные — сотые доли секунды, выделяется около 1% энергии, в основном в ультрафиолетовой части спектра. В связи с кратковременностью действия и поглощением значительной части волн воздухом эта фаза практически не имеет значения в общепоражающем эффекте светового излучения. Вторая фаза характеризуется излучением главным образом в видимой и инфракрасной частях спектра и в основном определяет поражающий эффект. Доза светового излучения, необходимая для возникновения ожогов определенной глубины, зависит от мощности взрыва. Так, например, ожоги II степени при взрыве ядерного заряда мощностью 1 килотонна возникают уже при дозе светового излучения 4 кал.см2, а мощностью 1 мегатонна — при дозе светового излучения 6,3 кал.см2. Это связано с тем, что при взрывах ядерных зарядов малой мощности световая энергия выделяется и воздействует на человека десятые доли секунды, при взрыве же большей мощности время излучения и воздействия световой энергии возрастает до нескольких секунд.

В результате непосредственного воздействия светового излучения на человека возникают так называемые первичные ожоги. Они составляют 80— 90% от общего числа термических травм в очаге поражения. Ожоги кожи у пораженных в Хиросиме и Нагасаки локализовались в основном на не защищенных одеждой участках тела, преимущественно на лице и конечностях. У людей, находившихся на расстоянии до 2,4 км от эпицентра взрыва, они были глубокими, а на более далеком расстоянии — поверхностными. Ожоги имели четкие контуры и располагались только на стороне тела, обращенной в сторону взрыва. Конфигурация ожога часто соответствовала очертаниям предметов, экранировавших излучение.

Световое излучение может вызвать временное ослепление и органическое поражение глаз. Это наиболее вероятно в ночное время, когда зрачок расширен. Временное ослепление обычно длится несколько минут (до 30 минут), после чего зрение полностью восстанавливается. Органические поражения — острый керато-конъюнктивит и, особенно, хориоретинальные ожоги могут привести к стойким нарушениям функции органа зрения (см. Ожоги).

Гамма-нейтронное излучение, воздействуя на организм, вызывает радиационные (лучевые) поражения. Нейтроны по сравнению с гамма-излучением обладают более выраженной биол. активностью и повреждающим действием на молекулярном, клеточном и органном уровнях. По мере удаления от центра взрыва интенсивность потока нейтронов уменьшается быстрее, чем интенсивность гамма-излучения. Так, слой воздуха 150—200 м уменьшает интенсивность гамма-излучения примерно в 2 раза, а интенсивность потока нейтронов — в 3—32 раза.

В условиях применения ядерного оружия лучевые поражения могут возникнуть при общем относительно равномерном и неравномерном облучении. Облучение относят к равномерному, когда проникающая радиация воздействует на весь организм, а перепад доз на отдельные участки тела незначительный. Это возможно в случае нахождения человека в момент ядерного взрыва на открытой местности или на следе радиоактивного облака. При таком облучении с увеличением поглощенной дозы радиации последовательно появляются признаки нарушения функции радиочувствительных органов и систем (костного мозга, кишечника, центральной нервной системы) и развиваются определенные клинические формы лучевой болезни — костномозговая, переходная, кишечная, токсемическая, церебральная. Неравномерное облучение возникает в случаях локальной защиты отдельных участков тела элементами фортификационных сооружений, техникой и др.

При этом различные органы повреждаются неравномерно, что сказывается на клинике лучевой болезни. Так, например, при общем облучении с преимущественным воздействием радиации на область головы могут развиться неврологические нарушения, а с преимущественным воздействием на область живота — сегментарный радиационный колит, энтерит. Кроме того, при лучевой болезни, возникающей в результате облучения с преобладанием нейтронного компонента, сильнее выражена первичная реакция, скрытый период менее продолжителен; в период разгара заболевания, помимо общих клинических признаков, отмечаются расстройства функции кишечника. Оценивая биологическое действие нейтронов в целом, следует также учитывать их неблагоприятное влияние на генетический аппарат соматических и половых клеток, в связи с чем возрастает опасность отдаленных радиологических последствий у облученных людей и их потомков (см. Лучевая болезнь).

На следе радиоактивного облака основная часть поглощенной дозы приходится на внешнее пролонгированное гамма-облучение. Однако при этом возможно развитие сочетанного радиационного поражения, когда ПЯВ одновременно воздействуют непосредственно на открытые участки тела и поступают внутрь организма. Такие поражения характеризуются клиникой острой лучевой болезни, бета-ожогами кожи, а также повреждением внутренних органов, к которым радиоактивные вещества имеют повышенную тропность (см. Инкорпорирование радиоактивных веществ).

При воздействии на организм всех поражающих факторов возникают комбинированные поражения. В Хиросиме и Нагасаки среди пострадавших, оставшихся в живых на 20-й день после применения ядерного оружия, такие пораженные составили соответственно 25,6 и 23,7%. Комбинированные поражения характеризуются более ранним наступлением лучевой болезни и тяжелым ее течением вследствие осложняющего воздействия механических травм и ожогов. Кроме того, удлиняется эректильная и углубляется торпидная фаза шока, извращаются репаративные процессы, часто возникают тяжелые гнойные осложнения (см. Комбинированные поражения).

Помимо поражения людей, следует учитывать и опосредованное воздействие ядерного оружия —разрушение строений, уничтожение запасов продовольствия, нарушение систем водоснабжения, канализации, энергопитания и др., в результате чего существенно возрастает проблема размещения, питания людей, проведения противоэпидемических мероприятий, оказания в столь неблагоприятных условиях медпомощи огромному количеству пораженных.

Приведенные данные свидетельствуют, что санитарные потери в войне с применением ядерного оружия будут существенно отличаться от таковых в войнах прошлого. Это отличие в основном заключается в следующем: в предшествовавших войнах преобладали механические травмы, а в войне с применением ядерного оружия наряду с ними значительный удельный вес будут занимать радиационные, термические и комбинированные поражения, сопровождающиеся высокой летальностью. Применение ядерного оружия будет характеризоваться возникновением очагов массовых санитарных потерь; при этом в связи с массовостью поражений и одномоментным поступлением большого количества пострадавших число нуждающихся в медпомощи значительно превысит реальные возможности медицинской службы армии и особенно медицинской службы ГО (см. Медицинская служба Гражданской обороны). В войне с применением ядерного оружия сотрутся грани между армейскими и фронтовыми районами действующей армии и глубоким тылом страны, а санитарные потери среди мирного населения будут значительно превышать потери в войсках.

Деятельность медицинской службы в столь сложной обстановке должна строиться на единых организационных, тактических и методических принципах военной медицины, сформулированных еще Н. И. Пироговым и в последующем развитых советскими учеными (см. Медицина военная, Система лечебно-эвакуационного обеспечения, Этапное лечение и др.). При массовом поступлении раненых и больных следует в первую очередь выделить лиц с поражениями, несовместимыми с жизнью. В условиях, когда количество раненых и больных во много раз превосходит реальные возможности медицинской службы, квалифицированная помощь должна оказываться в тех случаях, когда она позволит спасти жизнь пострадавшим. Сортировка (см. Сортировка медицинская), проведенная с таких позиций, будет способствовать наиболее рациональному использованию медицинских сил и средств для решения главной задачи — в каждом конкретном случае оказать помощь большинству раненых и больных.

Экологические последствия применения ядерного оружия за последние годы привлекают все большее внимание ученых, особенно специалистов, изучающих отдаленные результаты массированного применения современных видов ядерного оружия. Подробно и научно обоснованно проблема экологических последствий применения ядерного оружия была рассмотрена в докладе Международного комитета экспертов в области медицины и общественного здравоохранения «Последствия ядерной войны для здоровья населения и служб здравоохранения» на XXXVI сессии Всемирной ассамблеи здравоохранения, состоявшейся в мае 1983 года. Этот доклад был разработан указанным комитетом экспертов, включавшим авторитетных представителей медицинской науки и здравоохранения 13 государств (в том числе Великобритании, СССР, США, Франции и Японии), во исполнение резолюции WHA 34.38, принятой XXXIV сессией Всемирной ассамблеи здравоохранения 22 мая 1981 года, Советский Союз в этом комитете представляли видные ученые — специалисты в области радиационной биологии, гигиены и медицинской защиты академики АМН СССР Н. П. Бочков и Л. А. Ильин.

Основными факторами, возникающими при массированном применении ядерного оружия, которые могут вызвать катастрофические экологические последствия, согласно современным воззрениям, являются:разрушительное воздействие поражающих факторов ядерного оружия на биосферу Земли, влекущее за собой тотальное уничтожение животного мира и растительного покрова на территории, подвергшейся такому воздействию; резкое изменение состава атмосферы Земли в результате снижения доли кислорода и ее загрязнения продуктами ядерного взрыва, а также выброшенными в атмосферу из зоны бушующих на земле пожаров окисями азота, углерода и огромным количеством темных мелких частиц, обладающих высокими светопоглощающими свойствами.

Как свидетельствуют многочисленные исследования, выполненные учеными многих стран, интенсивное тепловое излучение, составляющее около 35% энергии, высвободившейся в результате термоядерного взрыва, окажет сильное воспламеняющее действие и приведет к возгоранию практически всех горючих материалов, находящихся в районах нанесения ядерных ударов. Пламя охватит огромные площади лесов, торфяников и населенные пункты. Под воздействием ударной волны ядерного взрыва могут быть повреждены линии подачи (трубопроводы) нефти и природного газа, а вышедший наружу горючий материал еще в большей степени усилит очаги пожара. В результате возникнет так называемый огненный ураган, температура которого может достигать 1000°; он будет продолжаться длительное время, охватывая все новые участки земной поверхности и превращая их в безжизненное пепелище.

Особенно пострадают верхние слои почвы, имеющие наиболее важное значение для экологической системы в целом, поскольку они обладают способностью удерживать влагу и являются средой обитания организмов, обеспечивающих происходящие в почве процессы биологического разложения и метаболизма. В результате таких неблагоприятных экологических сдвигов усилится эрозия почвы под влиянием ветра и атмосферных осадков, а также испарение влаги с оголенных участков земли. Все это в конечном итоге приведет к превращению некогда процветавших и плодородных регионов в безжизненную пустыню.

Дым от гигантских пожаров, смешавшийся с твердыми частицами продуктов наземных ядерных взрывов, окутает большую или меньшую поверхность (что зависит от масштабов применения ядерного оружия) земного шара плотным облаком, которое будет поглощать значительную часть солнечных лучей. Это затемнение при одновременном охлаждении земной поверхности (так называемая термоядерная зима) может продолжаться длительное время, оказывая губительное влияние на экологическую систему территорий, далеко отстоящих от зон непосредственного применения ядерного оружия. При этом следует также учитывать длительное тератогенное воздействие на экологическую систему указанных территорий глобальных радиоактивных осадков.

Крайне неблагоприятные экологические последствия применения ядерного оружия являются также результатом резкого сокращения содержания озона в защитном слое земной атмосферы в результате ее загрязнения окисями азота, выделяемыми при взрыве ядерных боеприпасов большой мощности, что повлечет за собой разрушение этого защитного слоя, обеспечивающего естественную биол. защиту клеток животных и растительных организмов от вредного воздействия УФ-излучения Солнца. Исчезновение растительного покрова на обширных территориях в сочетании с загрязнением атмосферы может привести к серьезным изменениям климата, в частности к существенному понижению среднегодовой температуры и ее резким суточным и сезонным колебаниям.

Таким образом, катастрофические экологические последствия применения ядерного оружия обусловлены: тотальным уничтожением среды обитания животного и растительного мира на поверхности Земли в обширных зонах, подвергшихся непосредственному воздействию ядерного оружия; длительным загрязнением атмосферы термоядерным смогом, крайне негативно влияющим на экологическую систему всего земного шара и обусловливающим изменения климата; продолжительным тератогенным воздействием глобальных радиоактивных осадков, выпадающих из атмосферы на поверхность Земли, на экологическую систему, частично сохранившуюся в зонах, не подвергшихся тотальному уничтожению поражающими факторами ядерного оружия. По заключению, зафиксированному в докладе Международного комитета экспертов, представленному XXXVI сессии Всемирной ассамблеи здравоохранения, ущерб, нанесенный экосистеме применением ядерного оружия, примет постоянный и, возможно, необратимый характер.

В настоящее время самой главной задачей для человечества является сохранение мира, предотвращение ядерной войны. Стержневым направлением внешнеполитической деятельности КПСС и Советского государства была и остается борьба за сохранение и укрепление всеобщего мира, обуздание гонки вооружений. СССР предпринимал и предпринимает настойчивые шаги в этом направлении. Наиболее конкретные крупномасштабные предложения КПСС нашли отражение в Политическом докладе Генерального секретаря ЦК КПСС М. С. Горбачева XXVII съезду КПСС, в котором были выдвинуты принципиальные Основы всеобъемлющей системы международной безопасности.


Библиогр.: Бонд В., Флиднер Г. и Аршамбо Д. Радиационная гибель млекопитающих, пер. с англ., М., 1971; Действие атомной бомбы в Японии, пер. с англ., под ред. А. В. Лебединского, М., 1960; Действие ядерно го оружия, пер. с англ., под ред. П. С. Дмитриева, М., 1965; Динерман А. А. Роль загрязнителей окружающей среды в нарушении эмбрионального развития, М., 1980; И о й-рыш А. И., Морохов И. Д. и Иванов С. К. А-бомба, М., 1980; Последствия ядерной войны для здоровья населения и служб здравоохранения, Женева, ВОЗ, 1984, библиогр.; Руководство по лечению комбинированных радиационных поражений на этапах медицинской эвакуации, под ред. Е. А. Жербина, М., 1982; Руководство по лечению обожженных на этапах медицинской эвакуации, под ред. В. К. Сологуба, М., 1979; Руководство по медицинской службе Гражданской обороны, под ред. А. И. Бурназяна, М., 1983; Руководство по травматологии для медицинской службы гражданской обороны, под ред. А. И. Казьмина, М., 1978; Смирнов Е. И. Научная организация военной медицины — главное условие ее большого вклада в победу, Вестн. АМН СССР, JNs 11, с. 30, 1975; он же, 60-летие Вооруженных Сил СССР и советской военной медицины, Сов. здравоохр., № 7, с. 17, 1978; он же, Война и военная медицина 1939—1945 гг., М.,1979; Чазов Е. И., Ильин Л. А. и Гуськова А. К. Опасность ядерной войны: Точка зрения советских ученых-медиков, М., 1982.


Превращение ядерного оружия в ядерное топливо

Исследователи работают с правительственными учреждениями по всему миру, чтобы демонтировать многочисленные ядерные запасы и превратить их в ядерное топливо. В современном мире растет беспокойство по поводу угрозы ядерной войны. В истории ядерные боеголовки использовались на войне только два раза — оба из США, и оба оказались невероятно разрушительными и смертоносными.

После Второй мировой войны многие страны по всему миру начали разрабатывать программы по созданию оружия массового уничтожения, многие из которых были сделаны со злым умыслом.Геополитическая напряженность после Второй мировой войны побудила произвести десятков тысяч единиц ядерного оружия. К счастью, с тех пор большинство из них было разобрано. Однако вместо того, чтобы растрачивать радиоактивные изотопы в оружии, правительства во всем мире превращают ядерное оружие в ядерное топливо.

Turning Nuclear Weapons into Nuclear Fuel

Атомная электростанция [Источник изображения: Wikimedia Commons ]

Свыше 14900 Ядерное оружие все еще в действии

В 1970-х годах глобальные запасы боеголовок в мире составляли более 70 000 единиц оружия.С тех пор предпринимаются постоянные усилия по ликвидации оружия массового уничтожения (ОМУ). За прошедшие годы демонтировано более 55000 единиц ядерного оружия. Несмотря на усилия, в мире по-прежнему действует около 14900 * ядерных боеголовок. Ядерное оружие представляет собой неминуемую угрозу для всех форм жизни на Земле.

В настоящее время продолжаются усилия по ликвидации производства ядерного оружия. Хотя запасы по-прежнему остаются активной угрозой для всего человечества.К счастью, правительства всего мира сотрудничают, чтобы демонтировать тысячи единиц оружия. Большая часть топлива будет и уже используется для работы ядерных генераторов. Это постоянные усилия, которые показывают значительное сокращение количества ОМУ. Всемирная ядерная ассоциация заявляет:

С 1987 года Соединенные Штаты и страны бывшего СССР подписали ряд договоров о разоружении, направленных на сокращение ядерных арсеналов примерно на 80% .

Turning Nuclear Weapons into Nuclear Fuel

[Источник изображения: FAS ]

Взаимное гарантированное уничтожение

По очевидным причинам изобилие ядерного оружия в мире может привести к ужасающей катастрофе.В настоящее время мир находится в состоянии взаимно гарантированного разрушения. Если какая-либо страна применит ядерное оружие, ответный ядерный удар неизбежен. Сегодня ракеты с ядерными боеголовками больше не привязаны к секретным подземным шахтам. Оружие мобильное и стратегически размещено по всему миру. Их перевозят на самолетах, лодках, подводных лодках и т. Д., И у правительства нет возможности вывести из строя ядерный арсенал другой страны с помощью одной атаки.

Осознавая затруднительное положение, многие страны разбирают свое ядерное оружие.Однако вместо того, чтобы тратить впустую высокорадиоактивный материал внутри, этот материал используется для питания атомных электростанций.

Программа мегатонн в мегаватты

Заключенное в 2013 году Соглашение между Соединенными Штатами и Россией о покупке высокообогащенного урана, в народе именуемое Программой «мегатонны в мегаватты», представляло собой соглашение, предусматривающее демонтаж более 20 000 единиц ядерного оружия. Предложенная в 1990-х годах программа «Мегатонны в мегаватты» предусматривает надзор за преобразованием оружия массового уничтожения в полезную энергию для гражданского использования.

Программа позволит Соединенным Штатам закупать низкообогащенный уран (НОУ), полученный из 500 метрических тонн (МТ) ВОУ российского оружейного происхождения.

Превращение ядерного оружия в пригодное для использования топливо

Уран оружейного качества высоко обогащен до уровней более 90% концентраций U-235 (делящегося изотопа). Оружейный плутоний (Pu-239) ступени чистоты более 93% . Его нестабильные свойства делают его очень радиоактивным, что дает ему возможность нагреваться до критических температур.Повышенные температуры приводят к большему количеству ядерных реакций в Уране. В результате выделяется больше радиации. ВОУ идеально подходит для оружия, поскольку он может чрезвычайно бурно реагировать, приводя к разрушительному атомному взрыву.

Нестабильность необходима для создания печально известных взрывов, которыми славится ядерное оружие. Однако концентрация слишком велика для безопасного обращения с коммерческими атомными электростанциями. Чтобы превратиться в ядерное топливо, ВОУ должен быть разбавлен.

Разбавление ВОУ

Перед тем, как попасть в реактор, обогащенный уран необходимо разбавить, чтобы снизить его температуру и сделать изотоп менее реактивным.Процедура включает смешивание оружейного материала с уже отработавшим ядерным топливом. Высокообогащенный уран (ВОУ) с обогащением более 90% снижается до всего обогащения 5% . Добавление дополнительного материала предотвращает опасный перегрев урана, вызывающий большее количество деления и большее количество ионизирующего излучения.

Процесс начинается с ядерного оружия. Металл ВОУ должен быть осторожно удален с боеголовки. Этот процесс чрезвычайно опасен и требует высокоточных машин для демонтажа и обработки радиационного материала.Радиация слишком сильна, чтобы человек мог выполнить операцию. После извлечения металл превращается в стружку, где его можно окислить.

Уран хорошо растворяется, то есть легко растворяется в воде. Однако в окисленном состоянии он становится нерастворимым. При подготовке к транспортировке уран необходимо окислить, чтобы в случае утечки радиоактивный изотоп не выщелачивался и не загрязнял источники воды. После окисления уран фторируется.

После фторирования образующийся высокообогащенный гексафторид урана смешивается в газовом потоке со слегка обогащенным ураном (отработавшее ядерное топливо) с образованием НОУ (низкообогащенного урана), пригодного для использования в коммерческих ядерных реакторах.

Turning Nuclear Weapons into Nuclear Fuel

Процесс преобразования ядерной боеголовки в ядерное топливо. [Источник изображения: NNSA ]

Бомбы для производства энергии

После демонтажа и разбавления до безопасной рабочей температуры радиоактивный материал, который когда-то использовался в ядерном оружии, можно использовать внутри атомной электростанции. За последние два десятилетия использование демонтированных ядерных оружейных материалов стало неотъемлемой частью производства энергии в Соединенных Штатах.

Материалы, извлеченные из бомб для производства энергии в то время, составляли 50% ядерного топлива и около 10% электроэнергии, производимой в Соединенных Штатах.

«Это отличный и простой источник топлива», — говорит Марина Алексеенкова, аналитик «Ренессанс Капитал» и эксперт по атомной отрасли России.

Мегатонны в мегаватты обезоруживают 20 000 Ядерное оружие

За 20-летний период программа произвела энергетический эквивалент более 200 миллионов тонн ископаемого топлива.Бюджет программы «Мегатонны в мегаватты» составил 13 миллиардов долларов США , что вдвое превышает сумму денег, которая была произведена из энергии, полученной из переработанного материала. Экономически проект провалился. Однако он никогда не предназначался для использования в качестве источника дохода.

Вместо этого программа послужила революционной платформой для избавления мира от изобилия ядерного оружия, оставшегося после холодной войны. С более чем 500 метрических тонн ВОУ, удаленных из ядерных арсеналов, в рамках проекта наблюдался демонтаж почти 20 000 единиц ядерного оружия.В результате она считается одной из самых успешных в мире программ уменьшения ядерной угрозы.

Соглашение «Мегатонны в мегаватты» послужило доказательством того, что страны могут разрешать разногласия вместо увеличения экономических и политических интересов. Переход от использования радиоактивных материалов с бомб к производству энергии представляет собой невероятную альтернативу сдерживанию распространения ядерных боеголовок.

Одна бомба может привести город в действие часами

В 2015 году в Соединенных Штатах по-прежнему находилось примерно 2000 развернутых боеголовок, 2000 резервных боеголовок и 2000, ожидающих демонтажа.

Согласно исследованию, проведенному студентом Стэндфордского университета Николасом Мартеларо, только одной бомбы достаточно, чтобы обеспечить город на часов . Преобразование энергии бомбы, сброшенной на Нагасаки (по имени Толстяк), в чистую энергию дает 8,4 × 10 13 Джоулей . Если только 66% энергии можно собрать в виде тепла, у бомбы будет достаточно энергии, чтобы обеспечить энергией город Лос-Анджелес в течение 1,1 часа .

Используя те же разговоры, Мартеларо оценивает, что если энергия из развернутого арсенала США будет регенерирована в виде электричества, этой энергии будет достаточно, чтобы обеспечивать Лос-Анджелес почти 8 лет .

США и Россия все еще хранят тысячи ядерных боеприпасов, ожидающих разоружения, и другие, которые хранятся в качестве запасных. Использование части мировых ядерных арсеналов могло бы обеспечить мир энергией на долгие годы, если страны захотят участвовать.

Осуществимость в будущем

Хотя программа «Мегатонна в мегаватт» успешно контролировала демонтаж десятков тысяч бомб, без желания других стран участвовать в аналогичных программах, мировой ядерный арсенал все равно останется в больших количествах.Однако осуществление подобных инициатив должно оставаться в руках России и США. Согласно исследованию, проведенному Стэнфордским университетом,

«7 260 боеголовок США и 7 500 боеголовок России вместе составляют более 90% мирового ядерного оружия». В документе говорится: «Примерно 2000 боевых боеголовок, развернутых каждой страной, более чем достаточно, чтобы стереть с лица земли планету».

Без заключения ядерного пакта о демонтаже ядерного оружия маловероятно, что страны, особенно другие, кроме США и России, будут активно сокращать свои арсеналы ядерного оружия с намерением производить электроэнергию.Несмотря на постоянное противодействие новым ядерным разработкам, вероятно, не будет необходимости в таком обширном пакте о ядерном разоружении в аналогичных масштабах соглашения от мегатонн к мегаваттам.

Why Nuclear

Тема ядерной науки активно обсуждается и часто изучается широкой общественностью. Однако это важнейший компонент современного современного общества. От металлоискателей, пожарной сигнализации, медицинского оборудования до производства электроэнергии — ядерная наука является неотъемлемой частью функциональности современной цивилизации.

Несмотря на то, что с ядерной наукой связано множество стигматов, атомная энергия остается надежной и безопасной альтернативой производству ископаемого топлива. Хотя в истории было несколько аварий, связанных с ядерными реакторами. Две самые известные аварии, произошедшие в Чернобле и Фукусиме, были результатом строгих нарушений протокола, который существует для предотвращения таких катастроф. Реакторы были устаревшими, и государственные органы проигнорировали строгие рекомендации по повышению безопасности и мерам резервного копирования.

Turning Nuclear Weapons into Nuclear Fuel

Реактор с водой под давлением. [Источник изображения: Wikimedia Commons ]

При ответственном использовании атомная энергия является эффективным средством производства энергии. В Соединенных Штатах на его долю приходится примерно 20% общего производства энергии. Тем не менее, для размещения образующихся радиоактивных отходов еще предстоит продвинуться вперед. Технология далека от совершенства, хотя уже более полувека она обеспечивает значительный объем электроэнергии по всему миру.

В будущем более чем вероятно, что тема атомной энергетики будет тщательно изучаться в течение многих лет. Тем не менее, технологии должны быть тщательно изучены, чтобы можно было продолжать улучшения.

Хотя позор остается, ядерные реакторы способствовали избавлению мира от 20 000 единиц ядерного оружия. Однако для дальнейшего сокращения мировых ядерных арсеналов потребуется значительно больше усилий. К счастью, он продолжает снижаться, но с ростом напряженности во всем мире можно только надеяться, что такой масштабный проект, как программа «Мегатонны в мегаватты», больше не понадобится.

СМОТРИ ТАКЖЕ: Посмотрите эти недавно рассекреченные ужасающие фильмы о ядерных испытаниях в США

Автор Maverick Baker

.

Договор о нераспространении ядерного оружия (ДНЯО) — UNODA

ДНЯО — это исторический международный договор, целью которого является предотвращение распространения ядерного оружия и оружейных технологий, содействие сотрудничеству в мирном использовании ядерной энергии и достижение цели достижения ядерного разоружения, а также всеобщего и полного разоружения. Договор представляет собой единственное обязательное обязательство в многостороннем договоре в отношении цели разоружения со стороны государств, обладающих ядерным оружием.Открытый для подписания в 1968 году, Договор вступил в силу в 1970 году. 11 мая 1995 года действие Договора было продлено на неопределенный срок. В общей сложности к Договору присоединилось 191 государство, включая пять государств, обладающих ядерным оружием. ДНЯО ратифицировало больше стран, чем любое другое соглашение об ограничении вооружений и разоружении, что свидетельствует о значении Договора.

Договор считается краеугольным камнем глобального режима ядерного нераспространения и важной основой для достижения ядерного разоружения.Он был разработан для предотвращения распространения ядерного оружия, для достижения целей ядерного разоружения и всеобщего и полного разоружения, а также для содействия сотрудничеству в мирном использовании ядерной энергии

Для достижения цели нераспространения и в качестве меры укрепления доверия между государствами-участниками Договор устанавливает систему гарантий, ответственность за которую несет Международное агентство по атомной энергии (МАГАТЭ). Гарантии используются для проверки соблюдения Договора посредством инспекций, проводимых МАГАТЭ.Договор способствует сотрудничеству в области мирной ядерной технологии и равного доступа к этой технологии для всех государств-участников, в то время как гарантии предотвращают перенаправление расщепляющегося материала для использования в оружии.

Положения Договора, в частности пункт 3 статьи VIII, предусматривают обзор действия Договора каждые пять лет, положение, которое было подтверждено государствами-участниками на Конференции 1995 года по рассмотрению и продлению действия Договора.
Конференция 2015 года участников Договора о нераспространении ядерного оружия по рассмотрению действия Договора завершилась без принятия консенсуса по вопросам существа.После успешной обзорной конференции 2010 года, на которой государства-участники согласовали заключительный документ, включающий выводы и рекомендации в отношении дальнейших действий, включая выполнение резолюции 1995 года по Ближнему Востоку, итоги 2015 года представляют собой неудачу для начатого усиленного процесса обзора. обеспечить подотчетность в отношении деятельности u

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *