В каких единицах измеряется доза облучения: Единицы измерения и дозы радиации

Содержание

Единицы измерения и дозы радиации

Навигация по статье:


Содержание статьи

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.


Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час


  • В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час



  • предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

    1 мЗв/год


Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.




В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м2)

Для оценки влияния радиации на вещество (не живые ткани), применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани, применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)



Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется - поглощенной дозой.

Поглощенная доза - это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется - Грей (Гр).

1 Грей - это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза - это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется -

Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*103 Р

Используемая внесистемная единица экспозиционной дозы - Рентген (Р):

1 Р = 2,57976*10-4 Кл/кг

Доза в 1 Рентген - это образование 2,083*109 пар ионов на 1см3 воздуха



Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза - это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется - Зиверт (Зв).

Используемая внесистемная единица эквивалентной дозы - Бэр (бэр): 1 Зв = 100 бэр.


Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией < 10 КэВ (нейтронное излучение)5
Нейтроны от 10 до 100 КэВ (нейтронное излучение)10
Нейтроны
от 100 КэВ до 2 МэВ (нейтронное излучение)
20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение)10
Нейтроны > 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение "эквивалентной дозы радиации":


Эквивалентная доза радиации - это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).



Допустимые нормы радиации

Допустимые нормы радиации

В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это - эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах - мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения

от техногенных источников 1 мЗв/год.

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения, величиной 5 мЗв/год. Используемая формулировка в документах - "приемлемый уровень", очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый.

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников. Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час. Это подробно рассмотрено в статье "Источники радиоактивных излучений". Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год, а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются.


Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 - 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час.
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа - радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников, является 1 мЗв/год.


Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час, действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь, по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.



Для справки:

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода - это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.




Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.




Единицы измерения, применяемые в СМИ

Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.



Другие единицы измерения радиации

  • Активность радиоактивного источника - ожидаемое число элементарных радиоактивных распадов в единицу времени. Измеряется:
  • Беккерель (Бк) - единица в системе СИ.
    1 Бк = 1 распад/с
  • Кюри (Ки) - внесистемная единица.
    1 Ки = 3,7*1010Бк


Перевод величин радиоактивного распада

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.




Видео: Единицы измерения и дозы радиации




Термины и определения

Радиация или ионизирующее излучение - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад - это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада - статистическая вероятность распада атома за единицу времени.

Период полураспада - промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза - эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы - это изменение дозы за единицу времени.


Радиация: единицы измерения / Хабр

При почти каждом разговоре о радиоактивности с неспециалистом оказывается, что собеседник имеет в той или иной степени смутное представление о единицах измерения. Вот и когда я опубликовал статью о радиохимической лаборатории, один из читателей пожаловался мне в личку, что у него от множества единиц, встречающихся в книгах и статьях о радиоактивности — рентгены, бэры, рэмы, рады, греи, зиверты, кюри, беккерели и даже грамм-эквиваленты радия — голова идет кругом и попросил об этом написать. Исполняю его просьбу.

Да, на КДПВ — супруги Мария Склодовская-Кюри и Пьер Кюри.

Немного истории

В 1895 году Вильгельм Конрад Рентген открыл излучение, обладавшее удивительными свойствами: действуя, подобно свету, на фотопластинки, и возбуждая свечение люминесцентных экранов, оно с легкостью проникало через непрозрачные преграды. Прошло совсем немного времени, как оказалось, что источником подобного излучения является не только работающая трубка Крукса, как в опытах Рентгена, но и вещества, содержащие уран, которые, к тому же, испускают это излучение непрерывно, неизменно и без какого-либо подвода энергии извне. За этим последовала буквально лавина открытий. Открытие радия, полония, а затем целого букета новых радиоактивных элементов, установление связи радиоактивного распада с превращением одного элемента в другой, первые осуществленные ядерные реакции… В общем, удивительно простой опыт Беккереля с урановой солью на завернутой в черную бумаге фотопластинке буквально распечатал «горшочек-не-вари» новых знаний. Разговор об этих открытиях — это тема другой статьи (и не одной), а сейчас я просто скажу, что уже тогда, в первые месяцы и годы этого «радиевого бума» нельзя было обойтись без измерений.

Первым измерительным прибором для определения интенсивности ионизирующей радиации стал обыкновенный электроскоп или электрометр, который разряжался под действием излучения, и скорость этого разряда была пропорциональна его интенсивности. А первым эталоном стала…

Ампула с миллиграммом радия, как мера радиоактивности

Эта ампула стала не только первым эталоном для градуировки электрометров и ионизационных камер — это была мера количества радиоактивности. Удивительным свойством радия оказалось исключительное постоянство его излучения: его интенсивность зависела только от количества радия. Поэтому, взяв однажды навеску в 1 мг радия и запаяв его в платиновую ампулу, стало возможным больше никогда радий не взвешивать. Сравнив интенсивность гамма-излучения от эталонной ампулы и образца, помещенного в ампулу с такой же толщиной стенки, можно было с высокой точностью определить количество радия в нем. Так что ампулы с радием заняли свое законное место в палатах мер и весов рядом с эталонами метра, килограмма и сферическими конями.

Строго говоря, источником гамма-излучения является не радий. И именно с этим связано то, что эталоном была именно запаянная ампула. Дело в том, что радий-226 не излучает гамма-лучи при распаде. Он испускает альфа-частицу, превращаясь в радон-222, который тогда называли эманацией радия. Последний, будучи также альфа-активным, затем претерпевает ряд распадов с испусканием альфа- и бета-частиц, некоторые из которых сопровождаются гамма-излучением. Из запаянной ампулы радону деваться некуда, и между радием и его радиоактивными продуктами распада устанавливается вековое равновесие: сколько радона (и каждого последующего члена радиоактивного ряда) образовалось, столько и распадается.

При сравнении радиоактивности других открытых впоследствии элементов с радием стали применять такую единицу, как миллиграмм-эквивалент радия, равный количеству радиоактивного вещества, который дает такую же интенсивность гамма-излучения, как и миллиграмм радия на том же расстоянии.

Миллиграмм-эквивалент радия, как единица радиоактивности, имеет тот очевидный недостаток, что гамма-излучение, вообще говоря, является своего рода побочным эффектом радиоактивного распада. Во-многих случаях оно либо отсутствует, либо возникает не в каждом акте распада. Поэтому от сравнения по интенсивности гамма-излучению перешли к понятию активности, как мере количества актов распада в препарате в единицу времени. Эталоном осталась все та же ампула с радием, и отсюда появилась единица кюри, определяемая, как активность радиоактивного вещества, в котором в единицу времени распадается столько же атомов (а именно, штук), сколько распадается атомов радия-226 в одном его грамме.

Единица кюри в настоящее время считается устаревшей, как и все внесистемные единицы. В системе СИ ее заменяет беккерель — это активность препарата, в котором в среднем происходит один распад в секунду. Таким образом, 1 Ки = Бк.

Электрометр и экспозиционная доза

Первым устройством для измерения интенсивности радиоактивного излучения, как я говорил, стал электрометр, который разряжался под действием лучей радия. Он стал предтечей ионизационной камеры — камеры с двумя противоположно заряженными электродами, которая позволяла определить количество ионов, образовавшихся в воздухе, заполнявшем камеру. Эти ионы в электрическом поле внутри ионизационной камеры начинают движение к электродам и, достигнув их, разряжают их. По величине уменьшения заряда электродов можно определить число пар ионов, которые образовались в воздухе под действием излучения. А измерив ток, протекающий через камеру в цепи внешнего источника напряжения, можно определить количество ионных пар, рождающихся в камере в единицу времени, пропорциональное интенсивности излучения.

Величина, которую таким образом измеряют, была названа экспозиционной дозой радиоактивного излучения. И единицей ее измерения стал рентген. При экспозиционной дозе в 1 рентген в одном кубическом сантиметре сухого воздуха образуется одна единица СГСЭ ( Кл) заряда каждого из ионов, что соответствует пар ионов. Кстати, наш эталонный 1 мг радия в платиновой ампуле на расстоянии 1 см в течение часа создает экспозиционную дозу в 8,4 рентгена (обычно в таком случае говорят о мощности экспозиционной дозы 8,4 Р/ч).

В системе СИ нет специальной единицы экспозиционной дозы и применяется единица кулон на килограмм. 1 Кл/кг = 3875.97 Р. Однако в настоящее время данная единица используется крайне редко из-за отказа от самого понятия экспозиционной дозы. Причина этого отказа в том, что эта достаточно легко измеряемая величина малопригодна для практического применения. Нас обычно интересует не то, сколько ионов образовалось в воздухе, а то действие, которое произвело облучение на вещество или живую ткань.

Поглощенная доза

Вполне очевидной является идея считать мерой воздействия радиоактивного излучения на вещество поглощенную в этом веществе энергию. Это и есть поглощенная доза, мерой которой является энергия излучения, поглощенная единицей массы вещества. Единицей измерения поглощенной дозы в СИ является грей: 1 Гр = 1 Дж/кг. Раньше применялась другая единица — рад. 1 рад = 100 эрг/г = 0,01 Гр. При экспозиционной дозе 1 Р поглощенная доза в воздухе равна 0,88 рад. В большинстве случаев эти 0,88 округляют до единицы, приравнивая рад к рентгену (хотя по сути это разные физические величины), а грей (и зиверт, о котором ниже) к 100 рентгенам.

А вот доза в различных веществах при одной и той же экспозиционной дозе будет различной в зависимости от вида и энергии излучения и свойств поглотителя. Именно по этой причине сейчас от понятия экспозиционной дозы отказались. На практике гораздо более корректным является измерение не экспозиционной дозы, а взять детектор, средний атомный номер которого равен среднему атомному номеру биологической ткани (в таком случае говорят о тканеэквивалентном детекторе) и измерять поглощенную дозу в нем. Тогда с определенной степенью точности можно полагать, что поглощенная доза в детекторе будет равна поглощенной дозе в биологической ткани.

Всякие разные дозы

Но оказывается, разные виды радиоактивных излучений действуют на живую ткань неодинаково. Альфа-излучение, протоны и нейтроны при одинаковой поглощенной дозе наносят ей гораздо больший вред, чем гамма-излучение и бета-частицы. В связи с этим наряду с поглощенной дозой возникает еще один вид дозы — эквивалентная доза. Она равна дозе гамма-излучения, которая вызывает такой же биологический эффект, как и доза данного излучения.
Единицей измерения эквивалентной дозы является зиверт. Старой единицей эквивалентной дозы является биологический эквивалент рентгена или бэр, по-английски REM (порой в переводной литературе и у рентгенологов можно встретить единицу «рэм» — это тот же бэр). 1 Зв = 100 бэр.

Для того, чтобы перевести поглощенную дозу в эквивалентную, нужно поглощенную дозу умножить на так называемый коэффициент качества. Этот коэффициент для фотонов, электронов и мюонов равен единице, для альфа-частиц принят равным 20, для протонов по разным данным — от 2 до 5, а для нейтронов сильно зависит от энергии, достигая 20 в интервале энергий от 100 кэВ до 2 МэВ (см. рисунок).

Помимо эквивалентной, рассматривают еще и эффективную дозу. Она учитывает не только разную степень вредности излучения, но и разную степень вредности облучения той или иной части тела или органа при облучении не всего тела, а его части. Каждой ткани и органу приписывают взвешивающие коэффициенты таким образом, чтобы сумма равнялась единице. При равномерном облучении всего тела эффективная доза равна эквивалентной. Измеряется она в тех же единицах, что эквивалентная.

На этом я и остановлюсь: не буду запутывать вас и рассказывать, что такое керма, амбиентный эквивалент дозы и еще многие штуки.

А как это все измеряют?

Чтобы измерить экспозиционную дозу, как я и говорил, нужно взять некоторый объем воздуха, собрать образовавшиеся в нем ионы и определить их количество, что с успехом решается с помощью ионизационной камеры. Именно на основе ионизационных камер сделана большая часть накопительных дозиметров «карандашного» типа.

А чтобы измерить поглощенную дозу, придется измерить количество энергии, выделившееся в веществе. И вот тут кроется главная сложность. Напрямую эту энергию измерить очень сложно, так как в большинстве случаев она очень мала. Один грей (а это серьезная доза, уже вызывающая лучевую болезнь) — это всего лишь джоуль на килограмм. Если мы попытаемся измерить эту дозу, например, калориметрически — по изменению температуры, то, например, алюминий нагреется всего лишь чуть больше, чем на тысячную градуса.

Поэтому все методы измерения поглощенной дозы или ее мощности косвенные. Они заключаются в том, что мы наблюдаем некий процесс, вызываемый облучением и требующий затраты энергии и предполагаем, что «выход» этого процесса будет линейно зависеть от энергетического вклада поглощенного излучения в него.

Первичным актом взаимодействия ионизирующего излучения с веществом почти всегда является, собственно, ионизация. Квант гамма-излучения или иная частица, испускаемая радиоактивным веществом, как правило, имеет энергию, значительно превышающую энергию, необходимую для того, чтобы вырвать электрон из атома. Поэтому одним актом ионизации дело не заканчивается. По всей траектории следования частицы в веществе порождаются свободные электроны и положительно заряженные ионы, энергии которых обычно сами превышают энергию ионизации, что приводит к развитию целого каскада процессов образования свободных электронов и ионов, до тех пор, пока их энергия не окажется сравнимой с энергией химической связи, с первыми энергиями ионизации и т.д. И уже эти электроны и ионы непосредственно осуществляют то воздействие на вещество, которое характерно для ионизирующих лучей: возбуждают люминесценцию, инициируют химические реакции, разрушают биологические структуры, становятся носителями электрического тока. И их количество и суммарная энергия пропорциональны поглощенной дозе (строго говоря — за вычетом энергии электронов, вылетевших за пределы вещества), при этом они уже «ничего не знают» о том, что их породило.
Исторически одним из первых дозиметров стала обычная фотопленка, завернутая в светонепроницаемый материал. Степень ее почернения после проявления примерно так же зависит от поглощенной дозы, как и от экспозиции обычным видимым светом: имеется область линейной зависимости, ограниченная загибом в области малых доз и насыщением (с последующей соляризацией — падением плотности) в области больших доз. Пленка является дешевым и довольно чувствительным, но не очень надежным дозиметром, так как небольшие отклонения в режимах обработки могут давать заметные погрешности определения дозы. Фотопленка является одним из первых представителей семейства химических дозиметров, в которых величина дозы определяется по количеству образованного или израсходованного в ходе реакции вещества: окрашенного, парамагнитного или обладающего другим легко измеримым свойством. Это может быть раствор в ампуле, темнеющий или окрашивающийся под действием радиации (например, из-за окисления железа (II) до железа (III) с последующим образованием ярко окрашенного в красный цвет роданида), стекло или кристалл, в которых образуются так называемые радиационные дефекты, поглощающие свет. Химические дозиметры позволяют определять дозу облучения с высокой точностью и в очень широких пределах — от тех, которые не нанесут человеку особого вреда до тех, которые убьют его в одну минуту. Но, как правило, они не позволяют измерить мощность дозы.

Люминесценция позволяет регистрировать даже акт поглощения единственной частицы или гамма-кванта, который приводит к возникновению в материале детектора короткой световой вспышки — сцинтилляции. На этом принципе основано действие сцинтилляционных детекторов, которые позволяют измерять даже очень слабые потоки радиации, в десятки и сотни раз более слабые, чем естественный радиационный фон. Сцинтилляционный датчик излучения в отличие от химических детекторов позволяет определять мощность поглощенной детектором дозы в реальном времени. Разумеется, для того, чтобы получить величину дозы, или мощности дозы, нужно не просто сосчитать число импульсов, а просуммировать, проинтегрировать испущенный сцинтиллятором свет.

Особой разновидностью таких детекторов являются так называемые термолюминесцентные детекторы. В них используется люминесцентный материал, который, вместо того, чтобы отмечать вспышкой света каждую частицу, сохраняет образованные ею свободные заряды в виде длительно существующих заряженных дефектов решетки. При нагревании эти дефекты «залечиваются», а освободившиеся электроны и дырки рекомбинируют, передавая энергию центрам люминесценции. И проинтегрировав световой импульс, возникающий при нагревании термолюминофора, мы определим накопленную им дозу.

Наконец, мы можем «поймать» не вторичные эффекты, вызванные ионизацией, а сами ионы — совсем как в ионизационной камере, только эта камера заполняется не газом, а полупроводником — германием, кремнием, теллуридом кадмия, наконец — алмазом. Средний ток через детектор будет пропорционален мощности поглощенной им дозы.

А что же всем известный счетчик Гейгера? А он не измеряет дозу. Он может только среагировать импульсом на пролет через него частицы, не разбираясь ни в том, что в него влетело, ни какую энергию оно имело. То есть он может измерить такую характеристику потока частиц, как флюенс: сколько частиц пролетело через заданную площадь. Точно так же будет работать сцинтилляционный или полупроводниковый детектор, если мы будем только фиксировать факт появления импульса, игнорируя его амплитуду.

Доза в разных материалах и ход с жесткостью

В параграфе про поглощенную дозу я упомянул вскользь, что в одном и том же потоке излучения доза, поглощенная разными материалами, будет разной и будет зависеть от энергии квантов и свойств вещества. В случае гамма-излучения его поглощение определяется единственной характеристикой материала — средним (или эффективным) атомным номером . Гамма-излучение передает веществам с одинаковым одну и ту же энергию при прохождении слоя с одинаковой массой на единицу площади. Так, материал, имеющий такой же валовой атомный состав, как живая ткань, будет при любых энергиях поглощать гамма-кванты так же, как живая ткань, и таким образом, поглощенная доза в детекторе, сделанном из этого материала будет равна поглощенной дозе в человеческом теле. А если мы сделаем детектор из йодида цезия (один из наиболее часто используемых сцинтилляторов), то мы сможем откалибровать его для какой-нибудь одной энергии, а при других энергиях он будет врать. Такое изменение показаний дозиметрического прибора в зависимости от энергии излучения носит название «хода с жесткостью» или энергетической зависимости дозовой чувствительности детектора.

На рисунке (из «Нового справочника химика и технолога», т. 11, стр. 111) приведены энергетические зависимости дозовой чувствительности детекторов, изготовленных на основе разных сцинтилляторов. Слева сравниваются антрацен (более «легкий» по среднему атомному весу, чем живая ткань) и йодистый натрий (значительно более «тяжелый», чем последняя). Видно, что в определенном диапазоне энергий детектор на основе йодида натрия завышает величину дозы в 10 раз! А на правом графике показано то, что взяв смесь органических сцинтилляторов — более «легкого» и более «тяжелого», чем живая ткань, можно практически полностью устранить «ход с жесткостью».

Другим способом устранения «хода с жесткостью» является подбор фильтров, поглощающих излучение в области, где чувствительность детектора избыточна.

Заключение

В заключение приведу небольшую табличку, где сведены основные рассмотренные в статье величины.

А для более полного ознакомления с темой рекомендую лекции профессора Игоря Николаевича Бекмана, МГУ

Все статьи серии

Радиация: Будни радиохимической лаборатории
Радиация: источники
Радиация: риски, безопасность, защита

В чём измеряется радиация, нормы для человека: в помещении, природе

Радиоактивное излучение окружает нас повсюду, в какой-то мере его имеют все предметы и даже сам человек. Представляет опасность не сама радиация, а когда её значение превысит некоторые значения. Одно дело, если человек подвергся радиации кратковременно и совсем другое, когда она воздействует длительное время, например, проживает в заражённой квартире. Забегая вперёд скажем, что для человека безопасная норма радиации определена в пределах 30 микрорентген в час (мкР/ч). Существуют ещё несколько единиц измерения. Другие нормы и единицы её измерения обсудим ниже.

что такое радиоактивность

Что такое радиоактивность

Что такое радиация

Содержание статьи

Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.

Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.

Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

В чём измеряется радиация

Единиц измерения радиации несколько, но в основном на пользовательском уровне предпочитается рентген, ассоциативно связанный с ней. На таблице ниже они приведены. Рассматривать подробно их не будем, так как при необходимости узнать радиоактивный фон в квартире будут нужны, пожалуй, только 2.

виды радиации

Виды радиации

  1. Зиверт – эквивалентная доза. 1 Зв = 100 Р = 100 БЭР = 1 Гр.
  2. Рентен — внесистемная единица — Кл/кг. 1 Р = 1 БЭР = 0,01 Зв.
  3. БЭР – аналог Зиверт, устаревшая внесистемная единица. 1 БЭР = 1 Р = 0,01 Зв.
  4. Грей – мощность поглощённой дозы – Дж/кг. 1 Гр = 100 Рад.
  5. Рад – доза поглощённой радиации Дж/кг. 1 рад – это 0,01 (1 рад = 0,01 Гр).

На практике больше в ходу системная единица Зиверт (Зв), мЗв – миллизиверт, мкЗв – микрозиверт, названная в честь учёного Рольфа Зиверта. Зиверт единица измерения эквивалентной дозы, выражается в количестве энергии полученной на килограмм массы Дж/кг.

Выражение радиации в Рентгенах также используется хоть и менее широко. Однако конвертировать рентгены в зиверты не составит труда.

1 Рентген равен 0,0098 Зв, но обычно значение в зиверт округляют до 0,01, что упрощает перевод. Так как это очень большие дозы в реальности пользуются гораздо меньшими значениями м – милли 10-3 и мк – микро 10-6 . Отсюда 100 мкР = 1 мкЗв, или 50 мкР = 0,5 мкЗв. То есть используется множитель 100. Когда нужно перевести микрозиверты в микрорентгены нужно какое-то значение умножить на сто, а если нужно перевести рентгены в зиверты, то необходимо поделить.

виды радиации

Уровень радиации которую может получить человека на процедурах и жизни

Надзор и нормативные документы

Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.

В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.

в чем измеряется радиация

Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
  • Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.
окружающая радиация

Доза радиации которую получает человек в течении года

Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

уровень излучения при перелётах

Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Доза. ЗивертВоздействие на человека
1–2Лёгкая форма лучевой болезни.
2–3Лучевая болезнь. Смертность в течение первого месяца до 35%.
3–6Смертность до 60%.
6–10Летальный исход 100% в течение года.
10–80Кома, смерть через полчаса
80 и болееМгновенная смерть

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.

радиоактивность материалов

Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Чем проверить наличие радиации

Проверить уровень радиации может возникнуть при покупке новой квартиры, квартиры в неблагополучном районе или использовании подозрительных материалов на строительстве дома. У человека нет органов чувств способных почувствовать радиацию и оценить опасность. Поэтому для её обнаружения необходимо наличие специализированных приборов — дозиметров.

дозиметры для измерения радиации

Бытовые дозиметры для измерения радиации

Они могут быть бытовыми, профессиональными, промышленными или военными. В качестве чувствительного элемента могут использоваться различные датчики: газоразрядные, сцинтилляционные кристаллы, слюдяные счётчики Гейгера-Мюллера, термолюминесцентные лампы, пин-диоды.

Для замеров в домашних условиях нам доступны бытовые дозиметры. В зависимости от прибора он может выводить показания на дисплей в мкЗв/ч или мкР/ч. Некоторые приборы более близкие к профессиональным могут показывать в обоих вариантах. Следует учитывать, что бытовые дозиметры имеют довольно высокий уровень погрешности измерений.

Доза облучения - это... Что такое Доза облучения?

Доза излучения — в физике и радиобиологии - величина, используемая для оценки воздействия ионизирующего излучения на любые вещества и живые организмы.

Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды – это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза – это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица – рентген (Р). 1 Кл/кг = 3880 Р

Поглощенная доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза. Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр – это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Эквивалентная доза

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (биологический эквивалент рада). 1 Зв = 100 бэр.

Эффективная доза

Эффективная доза (E) - величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма.

Значение коэффициента радиационного риска для отдельных органов

Органы, тканиКоэффициент
Гонады (половые железы)0,2
Красный костный мозг0,12
Толстый кишечник0,12
Желудок0,12
Лёгкие0,12
Мочевой пузырь0,05
Печень0,05
Пищевод0,05
Щитовидная железа0,05
Кожа0,01
Клетки костных поверхностей0,01
Головной мозг0,025
Остальные ткани0,05

Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.


Фиксированная эффективная эквивалентная доза (CEDE - the committed effective dose equivalent)- это оценка доз радиации на человека, в результате ингаляции или употребления некоторого количества радиоактивного вещества. СЕDЕ выражается в бэрах или зивертах (Зв) и учитывает радиочувствительность различных органов и время, в течение которого вещество остается в организме (вплоть до всей жизни). В зависимости от ситуации, СЕDЕ может также иметь отношение к дозе излучения определенного органа, а не всего тела.

Групповые дозы

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе – сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т.д. Её получают путем умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица – человеко-бэр (чел.-бэр).
Кроме того, выделяют следующие дозы:

  • коммитментная — ожидаемая доза, полувековая доза. Применяется в радиационной защите и гигиене при расчёте поглощённых, эквивалентных и эффективных доз от инкорпорированных радионуклидов; имеет размерность соответствующей дозы.
  • коллективная — расчётная величина, введенная для характеристики эффектов или ущерба для здоровья от облучения группы людей; единица — Зиверт (Зв).
    Коллективная доза определяется как сумма произведений средних доз на число людей в дозовых интервалах.
    Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.
  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предельно допустимые дозы (ПДД) — наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами (НРБ-99)
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску. Согласно имеющимся в настоящее время данным, величина удваивающей дозы для острого облучения составляет в среднем 2 Зв), а для хронического облучения — около 4 Зв.
  • биологическая доза гамма-нейтронного излучения — доза равноэффективного по поражению организма гамма-облучения, принятого за стандартное. Равна физической дозе данного излучения, умноженной на коэффициент качества.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облученных объектов.

Мощность дозы

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

См. также

Wikimedia Foundation. 2010.

Дозы излучения и единицы измерения

5. Дозы излучения и единицы измерения

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Таблица 10.

Основные радиологические величины и единицы

Величина Наименование и обозначение
единицы измерения
Соотношения между
единицами
Внесистемные Си
Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·1010Бк
1 Бк = 1 расп/с
1 Бк=2.7·10-11Ки
Экспозицион-
ная доза, X
Рентген (Р, R) Кулон/кг
(Кл/кг, C/kg)
1 Р=2.58·10-4 Кл/кг
1 Кл/кг=3.88·103 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 рад-10-2 Гр
1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр, rem) Зиверт (Зв, Sv) 1 бэр=10-2 Зв
1 Зв=100 бэр
Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10-5 Гр·кг
1 Гр·кг=105 рад·г

    Для описания влияния ионизирующих излучений на вещество используются следующие понятия и единицы измерения :
    Активность радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt) :

A = dN/dt

   Единица активности в системе СИ - Беккерель (Бк).
    Внесистемная единица - Кюри (Ки).

    Число радиоактивных ядер N(t) данного изотопа уменьшается со временем по закону:

N(t) = N0 exp(-tln2/T1/2) = N0 exp(-0.693t /T1/2)

    где N0 - число радиоактивных ядер в момент времени t = 0, Т1/2 -период полураспада - время, в течение которого распадается половина радиоактивных ядер.
    Массу m радионуклида активностью А можно рассчитать по формуле :

m = 2.4·10-24 ×M ×T1/2 × A,  

   где М - массовое число радионуклида, А - активность в Беккерелях, T1/2 - период полураспада в секундах. Масса получается в граммах.
    Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц :

X = dQ/dm

   Единица экспозиционной дозы - Рентген (Р). Рентген - это экспозиционная доза рентгеновского и
-излучения, создающая в 1куб.см воздуха при температуре О°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества. Экспозиционной дозе 1 Р
    соответствует 2.08·109 пар ионов (2.08·109 = 1/(4.8·10-10)). Если принять среднюю энергию образования 1 пары ионов в воздухе равной 33.85 эВ, то при экспозиционной дозе 1 Р одному кубическому сантиметру воздуха передается энергия, равная :
    (2.08·109)·33.85·(1.6·10-12) = 0.113 эрг,
    а одному грамму воздуха :
    0.113/возд = 0.113/0.001293 = 87.3 эрг.
    Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы.
    Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме :

D = dE/dm

    Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества.
    Эквивалентная доза (Н). Для оценки возможного ущерба здоровью человека в условиях хронического облучения в области радиационной безопасности введено понятие эквивалентной дозы Н, равной произведению поглощенной дозы Dr, созданной облучением - r и усредненной по анализируемому органу или по всему организму, на весовой множитель wr (называемый еще - коэффициент качества излучения)
(таблица 11).

   Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).

Таблица 11.

Весовые множители излучения

Вид излучения и диапазон энергий

Весовой множитель

Фотоны всех энергий

1

Электроны и мюоны всех энергий

1

Нейтроны с энергией < 10 КэВ

5

Нейтроны от 10 до 100 КэВ

10

Нейтроны от 100 КэВ до 2 МэВ

20

Нейтроны от 2 МэВ до 20 МэВ

10

Нейтроны > 20 МэВ

5

Протоны с энергий > 2 МэВ (кроме протонов отдачи)

5

альфа-частицы, осколки деления и другие тяжелые ядра

20

   Влияние облучения носит неравномерный характер. Для оценки ущерба здоровью человека за счет различного характера влияния облучения на разные органы (в условиях равномерного облучения всего тела) введено понятие эффективной эквивалентной дозы Еэфф применяемое при оценке возможных стохастических эффектов - злокачественных новообразований.
    Эффективная доза равна сумме взвешенных эквивалентных доз во всех органах и тканях:

   где wt - тканевый весовой множитель (таблица 12), а Ht -эквивалентная доза, поглощенная в
ткани - t. Единица эффективной эквивалентной дозы - Зиверт.

Таблица 12.

Значения тканевых весовых множителей wt   для различных органов и тканей.

Ткань или орган wt Ткань или орган wt
Половые железы 0.20 Печень 0.05
Красный костный мозг 0.12 Пищевод 0.05
Толстый кишечник 0.12 Щитовидная железа 0.05
Легкие 0.12 Кожа 0.01
Желудок 0.12 Поверхность костей 0.01
Мочевой пузырь 0.05 Остальные органы 0.05
Молочные железы 0.05    

    Коллективная эффективная эквивалентная доза. Для оценки ущерба здоровью персонала и населения от стохастических эффектов, вызванных действием ионизирующих излучений, используют коллективную эффективную эквивалентную дозу S, определяемую как:

где N(E) - число лиц, получивших индивидуальную эффективную эквивалентную дозу Е. Единицей S является человеко-Зиверт
(чел-Зв).
   Радионуклиды - радиоактивные атомы с данным массовым числом и атомным номером, а для изомерных атомов - и с данным определенным энергетическим состоянием атомного ядра. Радионуклиды
(и нерадиоактивные нуклиды) элемента иначе называют его изотопами.
    Помимо названных выше величин для сравнения степени радиационного повреждения вещества при воздействии на него различных ионизирующих частиц с разной энергией используется также величина линейной передачи энергии (ЛПЭ), определяемая соотношением :

 

где - средняя энергия, локально переданная среде ионизирующей частицей вследствие столкновений на элементарном пути dl.
   Пороговая энергия обычно относится к энергии электрона. Если в акте столкновения первичная заряженная частица образует -электрон с энергией больше , то эта энергия не включается в значение dE, и -электроны с энергией больше рассматриваются как самостоятельные первичные частицы.
    Выбор пороговой энергии является произвольным и зависит от конкретных условий.
    Из определения следует, что линейная передача энергии является некоторым аналогом тормозной способности вещества. Однако между этими величинами есть различие. Заключается оно в следующем:
    1. ЛПЭ не включает энергию, преобразованную в фотоны, т.е. радиационные потери.
    2. При заданном пороге   ЛПЭ не включает в себя кинетическую энергию частиц, превышающую .
    Величины ЛПЭ и тормозной способности совпадают, если можно пренебречь потерями на тормозное излучение и

Таблица 13.

Средние значения величины линейной передачи энергии L и
пробега R для электронов, протонов и альфа-частиц в мягкой ткани.
Частица Е, МэВ L, кэВ/мкм R, мкм
Электрон 0.01 2.3 1
0.1 0.42 180
1.0 0.25 5000
Протон 0.1 90 3
2.0 16 80
5.0 8 350
100.0 4 1400
α-частица 0.1 260 1
5.0 95 35

   По величине линейной передачи энергии можно определить весовой множитель данного вида излучения (таблица 14)

Таблица 14.

Зависимость весового множителя излучения wr от линейной
передачи энергии ионизирующего излучения L для воды.
L, кэВ/мкм < 3/5 7 23 53 > 175
wr 1 2 5 10 20
Предельно допустимые дозы облучения

По отношению к облучению население делится на 3 категории.
    Категория А   облучаемых лиц или персонал (профессиональные работники) - лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений.
    Категория Б   облучаемых лиц или ограниченная часть населения - лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующих излучений.
   Категория В   облучаемых лиц или население - население страны, республики, края или области.
    Для категории А вводятся предельно допустимые дозы -наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. Для категории Б определяется предел дозы.
    Устанавливается три группы критических органов:
    1 группа - все тело, гонады и красный костный мозг.
    2 группа - мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам.
    3 группа - кожный покров, костная ткань, кисти, предплечья, голени и стопы.
    Дозовые пределы облучения для разных категорий лиц даны в таблице 15.

Таблица 15.

Дозовые пределы внешнего и внутреннего облучения (бэр/год).

Категории лиц

Группы критических органов
1 2 3
Категория А, предельно допустимая доза (ПДД) 5 15 30
Категория Б, предел дозы(ПД) 0.5 1.5 3

    Помимо основных дозовых пределов для оценки влияния излучения используют производные нормативы и контрольные уровни. Нормативы рассчитаны с учетом непревышения дозовых пределов ПДД (предельно допустимая доза) и ПД (предел дозы). Расчет допустимого содержания радионуклида в организме проводят с учетом его радиотоксичности и непревышения ПДД в критическом органе. Контрольные уровни должны обеспечивать такие низкие уровни облучения, какие можно достичь при соблюдении основных дозовых пределов.
    Для категории А (персонала) установлены:
    -     предельно допустимое годовое поступление ПДП радионуклида через органы дыхания;
    -     допустимое содержание радионуклида в критическом органе ДСА;
    -     допустимая мощность дозы излучения ДМДА;
    -     допустимая плотность потока частиц ДППА;
    -     допустимая объемная активность (концентрация) радионуклида в воздухе рабочей зоны ДКА;
    -     допустимое загрязнение кожных покровов, спецодежды и рабочих поверхностей ДЗА .
    Для категории Б (ограниченной части населения) установлены:
    -    предел годового поступления ПГП радионуклида через органы дыхания или пищеварения;
    -     допустимая объемная активность (концентрация) радионуклида ДКБ в атмосферном воздухе и воде;
    -     допустимая мощность дозы ДМДБ;
    -     допустимая плотность потока частиц ДППБ;
    -     допустимое загрязнение кожных покровов, одежды и поверхностей ДЗБ .
    Численные значения допустимых уровней в полном объеме содержатся в
"Нормах радиационной безопасности".

Где и какие дозы мы можем получит? Примеры.

В чем измеряется радиация: единицы измерения, дозиметром

Ежедневно мы сталкиваемся с электромагнитным излучением. Солнечные лучи и сияние свечи, а также фотоэффект, выбивающий из внешнего слоя атомов электроны или потоки нейтрино, пронизывающие материю вокруг и не задевающие обычные атомы вещества. Все эти явления можно назвать относительно безопасными для человека. Многие из них используются в научных целях. К примеру, изучение строения атомарного ядра и его элементов осуществляется в ЦЕРН при помощи ускорения нейтронов для бомбардировки атомов. Этот процесс приводит к искусственному распаду ядра на составляющие, благодаря чему возможно детальнее изучать его части. Однако распад атомарного ядра встречается не только в массивной конструкции адронного коллайдера. Явление, которое люди симулируют в этой огромной машине, имеет более естественное происхождение, чем может показаться на первый взгляд. Если присмотреться ближе к Солнцу, то можно понять, что во внутренностях звезды происходит непрерывный процесс выделения энергии. Измерение солнечной радиации показывает наличие широкого спектра неполяризованного дневного света, в состав которого входят специфические виды электромагнитного излучения.

Рисунок 1. Эрнест Резерфорд и современная АЭС, в работе которой используются открытия ученого

Данный процесс обусловлен постоянным столкновением ядер с их последующим слиянием и выделением во внешнюю среду излишних протонов, нейтронов и остаточной энергии в виде волнового излучения. После эксперимента Резерфорда (Рисунок 1), доказавшего, что атомы можно разделять на части, люди поняли, что могут использовать это в свою пользу. Так человечество узнало о другом типе реакции – распаде атомного ядра с выделением энергии и побочных продуктов. Впоследствии этот принцип начал применяться для создания атомных электростанций. Во время работы реактора происходит контролируемое разложение тяжелых ядер на более легкие. В промышленности применяются стержни с сердечником из таких элементов как уран, торий и плутоний. Отталкиваясь от температуры активной зоны, в качестве оболочки используется алюминий, цирконий, нержавеющая сталь и графит. Неприятным развитием событий может стать утечка истощенных топливных элементов и возникновение радиоактивного загрязнения.

Излучение опасно тем, что оно невидимо для глаз человека, и единственный доступный путь обнаружения – это измерение радиации специальными приборами.

Что такое радиация и зачем ее замерять

Механизм возникновения заряженной частицы весьма прост: при разрушении ядра излишки нейтронов,

Доза излучения - это... Что такое Доза излучения?

До́за излуче́ния — в физике и радиобиологии — величина, используемая для оценки воздействия ионизирующего излучения на любые вещества, ткани и живые организмы.

Экспозиционная доза

Основная характеристика взаимодействия ионизирующего излучения и среды — это ионизационный эффект. В начальный период развития радиационной дозиметрии чаще всего приходилось иметь дело с рентгеновским излучением, распространявшимся в воздухе. Поэтому в качестве количественной меры поля излучения использовалась степень ионизации воздуха рентгеновских трубок или аппаратов. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза определяет ионизирующую способность рентгеновских и гамма-лучей и выражает энергию излучения, преобразованную в кинетическую энергию заряженных частиц в единице массы атмосферного воздуха. Экспозиционная доза — это отношение суммарного заряда всех ионов одного знака в элементарном объёме воздуха к массе воздуха в этом объёме.

В системе СИ единицей измерения экспозиционной дозы является кулон, деленный на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Поглощенная доза

При расширении круга известных видов ионизирующего излучения и сфер его приложения, оказалось, что мера воздействия ионизирующего излучения на вещество не поддается простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определенному радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощенная доза. Поглощенная доза показывает, какое количество энергии излучения поглощено в единице массы любого облучаемого вещества и определяется отношением поглощенной энергии ионизирующего излучения на массу вещества.

За единицу измерения поглощенной дозы в системе СИ принят грэй (Гр). 1 Гр — это такая доза, при которой массе 1 кг передается энергия ионизирующего излучения 1 Дж. Внесистемной единицей поглощенной дозы является рад. 1 Гр=100 рад.

Эквивалентная доза (биологическая доза)

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощенных дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжелая частица (например, протон) производит на единице пути в ткани больше ионов, чем легкая (например, электрон). При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путем умножения значения поглощенной дозы на специальный коэффициент — коэффициент относительной биологической эффективности (ОБЭ) или коэффициент качества.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощенная доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1963 года - биологический эквивалент рентгена, после 1963 года - биологический эквивалент рада - Энциклопедический словарь). 1 Зв = 100 бэр.

Эффективная доза

Эффективная доза (E) — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется коэффициентом радиационного риска. Умножив значение эквивалентной дозы на соответствующий коэффициент радиационного риска и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма.

Значение коэффициента радиационного риска для отдельных органов

Органы, тканиКоэффициент
Гонады (половые железы)0,2
Красный костный мозг0,12
Толстый кишечник0,12
Желудок0,12
Лёгкие0,12
Мочевой пузырь0,05
Печень0,05
Пищевод0,05
Щитовидная железа0,05
Кожа0,01
Клетки костных поверхностей0,01
Головной мозг0,025
Остальные ткани0,05

Взвешенные коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу. Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.


Фиксированная эффективная эквивалентная доза (CEDE — the committed effective dose equivalent)- это оценка доз радиации на человека, в результате ингаляции или употребления некоторого количества радиоактивного вещества. СЕDЕ выражается в бэрах или зивертах (Зв) и учитывает радиочувствительность различных органов и время, в течение которого вещество остается в организме (вплоть до всей жизни). В зависимости от ситуации, СЕDЕ может также иметь отношение к дозе облучения определенного органа, а не всего тела.


Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека и его потомков[источник не указан 259 дней]. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым. Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение. Единица амбиентного эквивалента дозы — зиверт (Зв).

Групповые дозы

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путем умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр).
Кроме того, выделяют следующие дозы:

  • коммитментная — ожидаемая доза, полувековая доза. Применяется в радиационной защите и гигиене при расчёте поглощённых, эквивалентных и эффективных доз от инкорпорированных радионуклидов; имеет размерность соответствующей дозы.
  • коллективная — расчётная величина, введенная для характеристики эффектов или ущерба для здоровья от облучения группы людей; единица — Зиверт (Зв).
    Коллективная доза определяется как сумма произведений средних доз на число людей в дозовых интервалах.
    Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.
  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предельно допустимые дозы (ПДД) — наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами (НРБ-99)
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску. Согласно имеющимся в настоящее время данным, величина удваивающей дозы для острого облучения составляет в среднем 2 Зв), а для хронического облучения — около 4 Зв.
  • биологическая доза гамма-нейтронного излучения — доза равноэффективного по поражению организма гамма-облучения, принятого за стандартное. Равна физической дозе данного излучения, умноженной на коэффициент качества.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облученных объектов.

Мощность дозы

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощенной, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например, Зв/час, бэр/мин, сЗв/год и др.).

Сводная таблица единиц измерения

Физическая величинаВнесистемная единицаСистемная единицаПереход от внесистемной к системной единице
Активность нуклида в радиоактивном источникеКюри (Ки)Беккерель (Бк)1Ки=3.7·1010Бк
Экспозиционная дозаРентген (Р)Кулон/килограмм (Кл/кг)1Р=2,58·10−4Кл/кг
Поглощенная дозаРад (рад)Грей (Дж/кг)1рад=0,01Гр
Эквивалентная дозаБэр (бер)Зиверт (Зв)1бэр=0,01 Зв
Мощность экспозиционной дозыРентген/секунда (Р/c)Кулон/килограмм в секунду (Кл/кг*с)1Р/c=2.58·10−4Кл/кг*с
Мощность поглощенной дозыРад/секунда (Рад/с)Грей/cекунда (Гр/с)1рад/с=0.01Гр/c
Мощность эквивалентной дозыБэр/cекунда (бэр/с)Зиверт/cекунда (Зв/с)1бэр/c=0.01Зв/с
Интегральная дозаРад-грамм (Рад-г)Грей-килограмм (Гр-кг)1рад-г=10−5Гр-кг

См. также

Как измеряется излучение - единицы радиоактивности
Red IAEA Ionizing Radiation Sign (Kricke)

Red IAEA Ionizing Radiation Sign (Kricke)

Красный знак ионизирующего излучения МАГАТЭ (Kricke)
Если вы видите этот знак, вы можете узнать, как измерять излучение.

Существует много единиц радиоактивности, но способы их использования могут сбивать с толку. Эти единицы выражают то, как часто радиоактивный источник производит излучение, как излучение взаимодействует с веществом и как излучение поглощается и влияет на биологические системы. Эти единицы можно разделить на четыре категории: радиоактивность, облучение, поглощенная доза и эквивалент дозы.

Радиоактивность - Беккерель и Кюри

Радиоактивность - это фактическое количество ионизирующего излучения, испускаемого атомом или любым другим источником. Это количество радиоактивных инцидентов независимо от типа излучения. Кюри (Ci) и беккерель (Bq) являются единицами радиоактивности. Беккерель является единицей радиоактивной активности СИ и определяется как 1 распад в секунду. Кюри равна 3,7 × 10 10 разломов в секунду. Это измерение было основано на активности радия-226.Один кюри был эквивалентен активности, испускаемой одним градием радия-226.

1 Бк = 1 дезинтеграций / секунду
1 Ки = 3,7 × 10 10 дезинтеграций / секунду = 3,7 × 10 10 Бк

Воздействие - Рентген

Воздействие - это количество радиоактивности, проходящей через окружающую среду. Устройства для измерения экспозиции могут быть откалиброваны для выбора типа измеряемой радиации или просто для измерения всей радиации, с которой они сталкиваются. Единицей облучения является рентген (R).

1 R = 2,58 × 10 −4 Кулон / килограмм

Поглощенная доза - рад и серый

Поглощенная доза - это количество излучения, поглощаемого объектом (или человеком). Это количество воздействия, которое фактически «прилипает» к материалу. Единицами измерения поглощенной дозы являются рад ( r , сложение , bsorbed d ose) и серый (Гр). Рад - единица поглощенной дозы в СГС, а серый - единица СИ.

1 Гр = 100 рад = 100 Дж / кг

Эквивалентная доза - rem и Seivert

Эквивалентная доза - это измерение поглощенной дозы, которая влияет на состояние здоровья в живой ткани.Это измерение должно учитывать тип радиации.

Для рентгеновских лучей, гамма-лучей и бета-частиц эквивалентная доза равна поглощенной дозе.

Для нейтронов важен диапазон энергий. Нейтроны с кинетической энергией менее 1 МэВ и более 50 МэВ увеличивают поглощенную дозу в 5 раз. Максимальное влияние нейтронов составляет от 1 МэВ до 50 МэВ, что может в 20 раз превышать поглощенную дозу.

Альфа-частицы могут нанести наибольший ущерб биологической системе.Эквивалент дозы может быть в 20 раз больше поглощенной дозы.

Единицей эквивалентной дозы являются бэри ( R , восточный e , эквивалентный - m an) и зиверт (Зв). Как и в случае с поглощенной дозой, rem является единицей CGS, а зиверт - единицей SI эквивалента дозы.

1 Зв = 100 бэр = 1 Дж / кг человеческой ткани

Эти значения обычно сопровождаются типом ткани. Некоторые ткани поглощают излучение лучше, чем другие. Легкие, костный мозг и желудок поглощают радиацию быстрее, чем кожа или мозг.

Fun Bonus Единица радиоактивности - BED

The BED is a unit of radiation equal to the amount of radiation in one banana.

The BED is a unit of radiation equal to the amount of radiation in one banana. BED - это единица излучения, равная количеству излучения в одном банане.

Бананы радиоактивны. Они содержат природный изотоп калия К-40. 150-граммовый банан может испускать достаточно радиации, чтобы учесть 0,1 мкЗв эквивалентной дозы. Это измерение известно как эквивалентная доза банана или BED. КРОВАТЬ была создана для иллюстрации низкого уровня радиоактивности, с которой люди сталкиваются в своей повседневной жизни.Типичное фоновое излучение составляет порядка 100 эквивалентных доз бананов. КТ грудной клетки стоит 7000 костей. Потребовалось бы 35 миллионов бананов (3,5 × 10 7 BED), чтобы дать человеку смертельную дозу радиации.

CDC Радиационные чрезвычайные ситуации | Измерение радиации

Когда ученые измеряют радиацию, они используют разные термины в зависимости от того, обсуждают ли они радиацию, исходящую от радиоактивного источника, дозу облучения, поглощенную человеком, или риск того, что человек будет страдать от воздействия радиации на здоровье (биологический риск). Этот информационный бюллетень объясняет некоторые термины, используемые для обсуждения измерения излучения.

Единицы измерения

Большинство ученых в международном сообществе измеряют радиацию, используя систему Internationale (SI), единую систему весов и мер, которая была разработана на основе метрической системы.Однако в Соединенных Штатах обычная система измерения все еще широко используется.

Используются разные единицы измерения в зависимости от того, какой аспект излучения измеряется. Например, количество излучения, испускаемого или испускаемого радиоактивным материалом, измеряется с использованием обычной единицы кюри (Ки), названной в честь знаменитого ученого Мари Кюри, или единицы СИ беккерелей (Бк). Доза облучения, поглощенная человеком (то есть количество энергии, выделяемой в ткани человека излучением), измеряется с использованием обычного блока рад или блока СИ серый (Гр).Биологический риск воздействия радиации измеряется с использованием обычного прибора rem или прибора SI sievert (Зв).

Измерение испускаемого излучения

Когда обсуждается количество излучаемого или испускаемого излучения, используемой единицей измерения является обычная единица Ci или единица СИ Bq.

Радиоактивный атом испускает или испускает радиоактивность, потому что ядро ​​имеет слишком много частиц, слишком много энергии или слишком много массы, чтобы быть стабильным.Ядро ломается или распадается, пытаясь достичь нерадиоактивного (стабильного) состояния. Когда ядро ​​распадается, энергия выделяется в форме излучения.

Ci или Bq используется для выражения количества распадов радиоактивных атомов в радиоактивном материале за период времени. Например, один Ci равен 37 миллиардам (37 X 10 9 ) распадов в секунду. Ci заменяется на Bq. Поскольку один Бк равен одному распаду в секунду, один Ки равен 37 миллиардам (37 X 10 9 ) Бк.

Ки или Бк может использоваться для обозначения количества радиоактивных материалов, выброшенных в окружающую среду. Например, во время аварии на Чернобыльской АЭС в бывшем Советском Союзе было выпущено около 81 млн. Ки радиоактивного цезия (тип радиоактивного материала).

Измерительная доза радиации

Когда человек подвергается воздействию радиации, энергия откладывается в тканях организма. Количество энергии, выделяемое на единицу массы человеческой ткани, называется поглощенной дозой.Поглощенная доза измеряется с использованием обычных рад или SI Гр .

Рад, который обозначает поглощенную дозу радиации, был обычной единицей измерения, но он был заменен на Гр . Один Гр равен 100 рад.

Измерение биологического риска

Биологический риск человека (то есть риск того, что человек будет страдать от воздействия радиации на здоровье) измеряется с использованием обычной единицы rem или единицы СИ Зв .

Чтобы определить биологический риск для человека, ученые присвоили номер каждому типу ионизирующего излучения (альфа- и бета-частицы, гамма-лучи и рентгеновские лучи) в зависимости от способности этого типа передавать энергию клеткам организма. Это число известно как фактор качества (Q).

Когда человек подвергается воздействию радиации, ученые могут умножить дозу в радианах на коэффициент качества для типа присутствующей радиации и оценить биологический риск для человека в рим. Таким образом, риск в rem = rad X Q.

Рем был заменен Sv. Один Зв равен 100 бэр.

Сокращения для измерений радиации

Когда измеряемое количество радиации меньше 1, префиксы прикрепляются к единице измерения как тип сокращения. Это называется научной нотацией и используется во многих научных областях, а не только для измерения радиации. В таблице ниже приведены префиксы для измерения излучения и связанные с ними числовые обозначения.

Префикс, равный которому много Аббревиатура Пример

атто- 1 х 10 -18 .000000000000000001 aCi

фемто- 1 X 10 -15 .000000000000001 fCi

pico- 1 X 10 -12 .000000000001 pCi

nano- 1 X 10 -9 .000000001 n nCi

микро- 1 X 10 -6 ,000001 м Ci

милли-1 X 10 -3 .001 мКи

санти- 1 х 10 -2 .01 сГр

Если измеряемая величина составляет 1000 (то есть 1 X 10 3 ) или выше, к единице измерения добавляются префиксы для сокращения очень больших чисел (также научное обозначение).В таблице ниже приведены префиксы, используемые при измерении излучения, и соответствующие им числовые обозначения.

Префикс, равный которому много Аббревиатура Пример

кило- 1 х 10 3 1000 кКи

мега- 1 X 10 6 1 000 000 M MCi

гига- 1 X 10 9 100 000 000 G GBq

тера- 1 х 10 12 100 000 000 000 т ТБк

peta- 1 X 10 15 100 000 000 000 000 P PBq

exa- 1 x 10 18 100 000 000 000 000 000 E EBq

Общие радиационные облучения

Люди ежедневно подвергаются облучению от различных источников, таких как естественные радиоактивные материалы в почве и космические лучи из космоса (которых мы получаем больше, когда летим на самолете).Некоторые распространенные способы облучения людей и связанные с ними дозы показаны в таблице ниже.

Источник воздействия Доза в бочке Доза в зиверте (Зв)

Воздействие космических лучей во время полета самолета в оба конца из Нью-Йорка в Лос-Анджелес 3 мрем 0,03 мЗв

Один рентгеновский снимок 4-15 мрем 0,04 ± 0,15 мЗв

Рентген грудной клетки 10 мрм 0,1 мЗв

Одна маммография 70 мрем 0,7 мЗв

Один год воздействия естественной радиации (от почвы, космических лучей и т. Д.)) 300 мрем 3 мЗв

Для получения дополнительной информации

Для получения дополнительной информации об измерении радиации вы можете посетить веб-сайт, на котором изображена внешняя иконка Общества физики здоровья, или «Внешняя иконка радиационной темы».

Для получения дополнительной информации о радиации, см. CDC Radiation Emergency Emergency. Вы также можете позвонить по горячей линии CDC по телефону 800-CDC-INFO или 888-232-6348 (TTY).

,
Измерительная радиация: терминология и единицы измерения

Этот ресурс является частью Science for Democratic Action vol. 8 № 4, который включает Глоссарий терминов, связанных с радиацией, и информацию об измерении радиации: приборы и методы. Также см. Соответствующий номер Energy & Security. 14 по ионизирующему излучению.

( Некоторые из используемых ниже терминов определены в глоссарии IEER )


Ионизирующее излучение испускается, когда радиоактивные вещества распадаются.Радиоактивный распад происходит, когда ядро ​​атома спонтанно распадается, испуская частицу (альфа-частицу, электрон или один или несколько нейтронов).

Четыре формы ионизирующего излучения - это альфа-частицы, бета-частицы, гамма-лучи и, косвенно, нейтроны. У всех есть достаточно энергии, чтобы ионизировать атомы, другими словами, удалить один или несколько электронов атома.

Альфа-частица состоит из двух протонов и двух нейтронов, эквивалентных
ядру атома гелия.Альфа-частицы легко ионизируют материал, с которым они контактируют, и передают энергию электронам этого материала. Альфа-частица может перемещаться в воздухе на несколько миллиметров, но в целом ее диапазон уменьшается с увеличением плотности среды. Например, альфа-частицы не проникают во внешний слой кожи человека, но при вдыхании альфа-частицы могут повредить ткани легких.

Бета-частица является электроном или позитроном и намного легче альфа-частицы. Таким образом, бета-частицам требуется большее расстояние, чем альфа-частицам, чтобы потерять энергию.Бета-частица средней энергии проходит около одного метра в воздухе и один миллиметр в тканях тела.

Гамма-лучи являются электромагнитным излучением. Радиоактивный элемент может испускать гамма-лучи (в дискретных пучках или квантах, называемых фотонов, ), если ядро, остающееся после альфа- или бета-распада, находится в возбужденном состоянии. Гамма-лучи могут проникать гораздо глубже, чем альфа- или бета-частицы; высокоэнергетический гамма-фотон может проходить через человека, вообще не взаимодействуя с тканью.Когда гамма-лучи взаимодействуют с тканью, они ионизируют атомы. Термин «рентгеновские лучи» также иногда используется для гамма-лучей, испускаемых в процессе радиоактивного распада, которые находятся на нижнем конце энергетического спектра электромагнитного излучения, возникающего в результате радиоактивного распада.

Нейтроны являются нейтральными частицами, которые не имеют электрического заряда. В отличие от альфа- и бета-частиц, они не взаимодействуют с электронами и не вызывают ионизацию напрямую. Однако нейтроны могут косвенно ионизироваться различными способами: упругими столкновениями, неупругим рассеянием, неупругим рассеянием, реакциями захвата или процессами расщепления.Эти процессы по-разному приводят к испусканию гамма-лучей, бета-излучения и, в случае скалывания, большего количества нейтронов. Для более подробного объяснения см. Воздействие на здоровье воздействия низких уровней ионизирующего излучения (отчет BEIR V), National Academy Press, 1990, стр. 15-17.

Измерение радиоактивности

Ионизирующее излучение может быть измерено с использованием единиц измерения: электрон-вольт, эрг и джоулей. электрон-вольт (сокращенно eV) - это единица энергии, связанная с движением электронов вокруг.Электрон «тесно связан» в атоме водорода (один протон и один электрон). Требуется энергия, чтобы отодвинуть этот электрон от протона. Требуется 13,6 электрон-вольт энергии, чтобы полностью отодвинуть этот электрон от протона. Тогда мы говорим, что атом «ионизирован». На жаргоне «энергия ионизации» сильно связанного электрона в водороде составляет 13,6 электрон-вольт.

Электроны очень легкие объекты, поэтому мы не ожидаем, что электрон-вольт будет представлять очень много энергии. Один электрон-вольт только 1.6 x 10 -19 джоулей энергии, другими словами, 0,16 миллиарда миллиардов джоулей. Один джоулей (сокращенно J) эквивалентен количеству энергии, потребляемой лампочкой мощностью в один ватт, зажженной в течение одной секунды. Энергия, связанная с радиоактивным распадом, колеблется от тысяч до миллионов электрон-вольт на ядро, поэтому распад одного ядра обычно приводит к большому количеству ионизаций.

Радиоактивность вещества измеряется количеством ядер, распадающихся за единицу времени.Стандартная международная единица или радиоактивность называется беккерелем (сокращенно Bq), что равно одному разложению в секунду (dps). Радиоактивность также измеряется в кюри, исторической единице, основанной на количестве распадаемости в секунду на один грамм радия-226 (37 миллиардов). Следовательно, 1 кюри = 37 млрд. Бк. Одна пикокьюрия (триллионная часть кюри) = 0,037 Бк, а 1 Бк = 27 пикокур. Радиоактивность также измеряется по разложению в минуту (дпм). Один дпм = 1/60 Бк.

Удельная активность измеряет радиоактивность единицы массы вещества. Единицами измерения являются кюри на грамм или беккерели на грамм. Это позволяет нам сравнивать, является ли вещество более или менее радиоактивным, чем другое. Удельная активность радионуклида обратно пропорциональна его атомному весу и периоду полураспада.

Экологические и биологические измерения радиоактивности обычно выражаются в виде концентраций радиоактивности в почве, воде, воздухе или ткани.Примеры единиц включают пикокуры на литр, беккерели на кубический метр, пикокуры на грамм и распад в минуту на 100 квадратных сантиметров. Одна пикокьюрия (сокращенно pCi) составляет 10 -12 (или 0,000000000001) кюри. Иногда вес радиоактивного материала на единицу почвы или ткани может быть дан и выражен в частях на миллион, или ppm, может быть выражен в единицах массы. Это может быть преобразовано в единицы радиоактивности, так как мы знаем конкретные действия различных радионуклидов.Распад в минуту на 100 квадратных сантиметров (дпм / 100 см 2 ) - это единица, обычно используемая для измерения поверхностного загрязнения объекта, такого как бетон или металл.

Измерительная доза

Размещение вашего тела вблизи радиоактивного источника приводит к облучению. Чтобы оценить опасность от этого воздействия, необходимо рассчитать поглощенную дозу . Это определяется как энергия, передаваемая определенной массе ткани. Доза, как правило, не равномерна по всему телу. Радиоактивное вещество может избирательно поглощаться различными органами или тканями.

Дозы облучения часто рассчитываются в единицах рад, (сокращение от r, adiation и bsorbed d ose). Один рад составляет 100 эрг / грамм, другими словами, 100 эрг энергии, поглощенной одним граммом данной ткани тела. Эрг составляет одну десятую миллионную часть джоуля. Сто рад равняется одному Джоулю / килограмм (Дж / кг), что также равно одному Грей (Гр), стандартной международной единице измерения дозы облучения. Предположим, время вовлечено? Тогда речь идет о мощности дозы (или дозы в единицу времени).Примером единиц для мощности дозы является миллирад / час. В повседневной жизни джоуль (а тем более эрг) - это довольно небольшое количество энергии. Но с точки зрения потенциала ионизации молекул или элементов, джоуль - это огромное количество энергии. Один джоуль ионизирующего излучения может вызвать десятки тысяч триллионов ионизаций.

Рентген измеряет количество ионизации в воздухе, вызванное радиоактивным распадом ядер. В не костной биологической ткани один рентген является эквивалентом около 0.93 рад. В воздухе один рентген равен 0,87 рад. Циферблаты, которые показывают калибровку в мР / ч, показывают миллироэнтген в час.

Говоря физически, самый элементарный способ измерить эффект излучения - это измерить количество энергии, выделяемой в данном весе материала. Тем не менее, отложение энергии является лишь одним аспектом потенциальной возможности радиации нанести
биологических повреждений. Ущерб, нанесенный на единицу депонированной энергии, больше, когда она наносится на более короткое расстояние.Следовательно, альфа-частица, которая будет откладывать всю свою энергию на очень короткое расстояние, наносит гораздо больший ущерб на единицу энергии, чем гамма-луч, который откладывает свою энергию на более длинный трек. Вес биологического вещества, в котором откладывается энергия, также важен. Чувствительность различных органов также различна. Концепция относительной биологической эффективности (RBE) была создана для того, чтобы попытаться отразить относительную эффективность различных видов радиации в создании биологического ущерба.

ОБЭ варьируется в зависимости от органа, возраста облучения и других факторов. Единственный фактор, называемый фактором качества, для преобразования депонированной энергии в радиан, используется в целях регулирования, хотя это представляет собой значительное упрощение реальных рисков. Для бета- и гамма-излучения используется добротность 1, то есть 1 рад = 1 бэр. Альфа-излучение наносит гораздо больший вред единице энергии, выделяющейся в живой ткани. В настоящее время добротность альфа составляет 20 (умножьте рад альфа-излучения на 20, чтобы получить rem).Мы говорим «в настоящее время», потому что качественный фактор для альфа-излучения изменился за эти годы. Текущий добротность, обычно используемая для нейтронов, составляет 10.

Коэффициенты пересчета дозы (DCF) используются для преобразования количества радиоактивности (выраженной в кюри или беккерелях), вдыхаемого или проглатываемого человеком, в дозу (выраженную в бочках и сивертах). DCF, используемые для целей регулирования, получены из комбинации различных экспериментальных данных и математических моделей.

Некоторые единицы измерения используются для измерения ионизирующего излучения и дозы облучения
Единица Описание Эквивалент
Рем (человек в рентгеновском эквиваленте) Единица эквивалентной поглощенной дозы радиации, которая учитывает относительную биологическую эффективность различных форм ионизирующего излучения или различные способы, которыми они передают свою энергию тканям человека. Доза в rem равна дозе в рад, умноженной на добротность (Q).Для бета- и гамма-излучения коэффициент качества принимается равным единице, то есть rem равен rad. Для альфа-излучения коэффициент качества принимается равным 20, т.е. Rem - это по существу мера биологического ущерба. Для нейтронов Q обычно принимается равным 10. rem = рад х Q
Зиверт (Зв) Единица эквивалентной поглощенной дозы, равная 100 бэр. 1 Зв = 100 бэр
Зв = Гр x Q
Рад (поглощенная радиация доза) Единица поглощенной дозы радиации.Рад является мерой количества энергии, депонированной в ткани. 1 рад = 100
эрг / грамм
Grey (Gy) Единица поглощенной дозы излучения, равная 100 рад. Серый является мерой отложения энергии в ткани. 1 Гр = 100 рад
Кюри (Ci) Традиционная единица радиоактивности, равная радиоактивности одного грамма чистого радия-226. 1 Ки = 37 млрд дпс = 37 млрд Бк
Беккерель (Бк) Стандартная международная единица радиоактивности, равная одному распаду в секунду. 1 Бк = 27 pCi
Распад в секунду (дпс) Количество субатомных частиц (например, альфа-частиц) или фотонов (гамма-лучей), выпущенных из ядра данного атома за одну секунду. Один дпс = 60 дпм (распад в минуту). 1 дпс = 1 Бк

Источники: Ядерные пустоши , Махиджани и др., Ред., Кембридж: MIT Press, 1995; Наука за демократическое действие , вып.6 нет. 2 ноября 1997 года; Радиационная защита: Руководство для ученых и врачей, 3-е изд., Джейкоб Шапиро, Кембридж: издательство Гарвардского университета, 1990.

,

Как измеряется облучение?

Около 150 человек, живущих или работающих на поврежденных ядерных объектах Японии, были подвергнуты мониторингу на предмет возможного радиационного воздействия, и 23 было обнаружено, что они нуждаются в лечении. Как измеряется степень их воздействия?

По данным Комиссии по ядерному регулированию США (NRC), «воздействие» относится к количеству излучения, такого как рентгеновские лучи, гамма-лучи, нейтроны, альфа- и бета-частицы, присутствующие в воздухе. Экспозиция, обычно выражаемая в единицах рентгеновских лучей, измеряется счетчиками Гейгера и аналогичными устройствами.Счетчик Гейгера регистрирует, сколько содержащегося в нем газа ионизируется поступающими частицами излучения, и преобразует эту информацию в электронный сигнал.

Люди, однако, не поглощают всю радиацию, которой они подвергаются; большинство из них проходит прямо через их тела. Небольшое количество энергии, переносимой излучением, поглощается тканями организма, и это поглощенное количество измеряется в единицах «дозы, поглощенной излучением» (рад). Радиация воздействует на разных людей по-разному, но эмпирические правила, применяемые бригадами безопасности, гласят, что один рентгеновский луч гамма- или рентгеновского излучения обычно дает поглощенную дозу приблизительно 1 рад.Измеряя уровень радиации вокруг тела человека с помощью счетчика Гейгера, сотрудник службы безопасности может приблизить поглощенную дозу этого человека.

Более сложная мера радиационного облучения, называемая эффективной дозой, учитывает вредность конкретного типа присутствующей радиации. Хотя эффективная и поглощенная дозы одинаковы для бета- и гамма-излучения, для альфа- и нейтронного излучения - типов, которые особенно опасны для человеческого организма, - эффективная доза имеет большее значение, чем поглощенная доза.Таким образом, мера эффективной дозы дает конкретную шкалу для определения того, насколько опасен факт воздействия. Единицами эффективной дозы являются «человек в рентгеновском эквиваленте» (rem) и зиверт (Sv), где один Sv равен 100 rem.

Среднестатистический человек получает эффективную дозу 0,36 бэр в год, 80 процентов из которых поступают от естественных источников излучения, таких как радиоактивные материалы в земной коре и мантии, а также источники в космическом пространстве. Оставшиеся 20 процентов эффективной дозы для среднего человека являются результатом воздействия искусственных источников излучения, таких как рентгеновские аппараты, промышленные детекторы дыма, а также продолжающихся последствий испытаний ядерного оружия.

В Соединенных Штатах NRC ограничивает профессиональное облучение взрослых, работающих с радиоактивными материалами, до 5 бэр в год. Лимит может быть увеличен до 25 бэр в чрезвычайных ситуациях; этот уровень до сих пор не считается опасным.

Уровень радиации на Фукусиме поднялся до 0,8 бэр в час после взрыва на одном из ядерных реакторов ранее сегодня (15 марта). Если бы аварийные работники не были эвакуированы вскоре после этого, они получили бы свою ежегодную профессиональную дозировку чуть более чем за 6 часов.

Хотя это потенциально опасно, эта сумма все равно не была бы смертельной. Согласно NRC, «[считается], как правило, считается, что люди, подвергшиеся облучению около 500 бэр сразу, скорее всего, умрут без медицинской помощи. Аналогично, однократная доза в 100 бэр может вызвать у человека тошноту или покраснение кожи» ( хотя выздоровление вероятно), и около 25 бэр могут вызвать временное бесплодие у мужчин. Однако, если эти дозы распространяются во времени, а не доставляются сразу, их последствия, как правило, менее серьезны.

Эта статья была предоставлена ​​ Маленькие загадки жизни , родственный сайт LiveScience. Следите за Натали Вулчовер в Твиттере @nattyover

,

Отправить ответ

avatar
  Подписаться  
Уведомление о