Единицы измерения ионизирующих излучений: Единицы измерения ионизирующих излучений

Содержание

4.2. Единицы измерения ионизирующих излучений

Активность источника радиационного излучения характеризуется числом ядерных превращений в единицу времени и выражается в беккерелях (Бк): 1Бк = 1 распад в секунду (внесистемная единица Кюри — Кu = 3,7. 1010 Бк).

Поле, создаваемое источником ионизирующего излучения, имеет следующие характеристики:

1. Экспозиционная доза рентгеновского и гамма-излучения D0 определяется по ионизации воздуха. Она представляет собой отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха массой dm, полностью остановились, к массе воздуха в указанном обьеме:

D0 = dQ / dm

Единица измерения — кулон на килограмм, Кл/кг. Используется и внесистемная единица измерения — рентген,

Р ( 1 Р = 2,25 . 10-4 Кл/кг ).

2. Мощность экспозиционной дозы P0— приращение экспозиционной дозы в единицу времени:

P0 = dD0 / dt

Единица измерения — Ампер на килограмм, А/кг. Внесистемная единица Р/с (1 А/кг = 3,88 Р/с).

Поглощение энергии излучения объектами неживой природы характеризуется следующими параметрами:

1. Поглощенная доза излучения D — это энергия ионизирующего излучения dE, поглощенная облучаемым веществом и рассчитанная на единицу его массы:

D = dE / dm

Единица измерения поглощенной дозы — грей, Гр. Внесистемная единица рад, 1 Гр = 100 рад = 1 Дж/кг.

2. Мощность поглощенной дозы Р — приращение поглощенной дозы излучения

dD в единицу времени.

P = dD / dt , Гр/с.

При характеристике поглощения облучения биологическими объектами используют следующие понятия:

1. Эквивалентная доза Н — основная дозиметрическая величина в области радиационной безопасности, введенная для оценки возможного ущерба здоровью человека от хронического воздействия ионизирующего излучения произвольного состава.

Эквивалентная доза равна произведению поглощенной дозы на средний коэффициент качества — к, учитывающий биологическую эффективность разных видов ионизирующих излучений. Измеряется в зивертах, Зв, внесистемная единица — бэр, 1 Зв = 100 бэр.

2. Мощность эквивалентной дозы — приращение эквивалентной дозы в единицу времени. Единица мощности эквивалентной дозы — Зиверт в секунду, Зв/с, 1 Зв/с = 100 бэр/с.

3. Эффективная эквивалентная доза (ЭЭД) Не — сумма произведений эквивалентной дозы, полученной каждым органом

НТ, на соответствующий весовой коэффициент WТ, учитывающий различную чувствительность органов к излучению. ЭЭД обеспечивает сравнимость и приведение неравномерного облучения тела к такой же оценке его последствий, как и при равномерном облучении:

Т

Не = HТ WТ .

i=1

Эта величина измеряется в зивертах, Зв. Например, доза облучения легких 1 мЗв соответствует ЭЭД = 0,12 мЗв, т.е. показывает, что при равномерном облучении всего тела дозой 0,12 мЗв вероятность риска от облучения такая же, что и при облучении дозой 1 мЗв только легких.

4.3. Естественные и антропогенные источники ионизирующих излучений

Во всех естественных биотопах всегда наблюдается определенный естественный уровень радиации, даже при отсутствии каких-либо технических источников.

Земная поверхность служит источником многих видов излучения, так как она содержит различные природные радиоактивные элементы: уран, торий, радий, актиний и т.д. Кроме того, в почве и воде встречается два радиоактивных изотопа 40К и 14С, которые активно внедряются в живой организм. В результате распада природного урана в атмосферу выделяется промежуточный продукт распада — радиоактивный инертный газ радон 222Rn и 219Rn.

Вся биосфера подвергается также воздействию излучений, приходящих из космоса. В состав космического излучения входят протоны (более 90 %), -частицы (7 %), ядра тяжелых элементов (1 %). Подавляющая его часть имеет галактическое происхождение, лишь небольшая часть связана с активностью Солнца. Частицы, составляющие галактическое излучение, имеют огромные энергии и, следовательно, обладают большой проникающей способностью. Мощность поглощенной дозы, создаваемая этими частицами, невелика; в космосе она не превышает 0,2 Гр/год, после прохождения через атмосферу снижается до 3

.10-4 Гр/год. Космическое излучение вызывает различные радиационно-химические процессы в верхних слоях атмосферы. По мере приближения к поверхности Земли его роль становится пренебрежительно малой вследствие уменьшения интенсивности излучения.

Антропогенное изменение радиационной обстановки в биосфере связано в основном с ядерными испытаниями, местами захоронения ядерных отходов и объектами ядерной энергетики. В результате антропогенных процессов в биосфере усилились потоки естественных и искусственных радионуклидов, увеличился естественный фон ионизирующих излучений, возросло число зон повышенного радиационного воздействия.

4.2. Единицы измерения ионизирующих излучений

Активность источника радиационного излучения характеризуется числом ядерных превращений в единицу времени и выражается в беккерелях (Бк): 1Бк = 1 распад в секунду (внесистемная единица Кюри — Кu = 3,7

. 1010 Бк).

Поле, создаваемое источником ионизирующего излучения, имеет следующие характеристики:

1. Экспозиционная доза рентгеновского и гамма-излучения D0 определяется по ионизации воздуха. Она представляет собой отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха массой dm, полностью остановились, к массе воздуха в указанном обьеме:

D0 = dQ / dm

Единица измерения — кулон на килограмм, Кл/кг. Используется и внесистемная единица измерения — рентген, Р ( 1 Р = 2,25 . 10-4 Кл/кг ).

2. Мощность экспозиционной дозы P0

— приращение экспозиционной дозы в единицу времени:

P0 = dD0 / dt

Единица измерения — Ампер на килограмм, А/кг. Внесистемная единица Р/с (1 А/кг = 3,88 Р/с).

Поглощение энергии излучения объектами неживой природы характеризуется следующими параметрами:

1. Поглощенная доза излучения D — это энергия ионизирующего излучения dE, поглощенная облучаемым веществом и рассчитанная на единицу его массы:

D = dE / dm

Единица измерения поглощенной дозы — грей, Гр. Внесистемная единица рад, 1 Гр = 100 рад = 1 Дж/кг.

2. Мощность поглощенной дозы Р — приращение поглощенной дозы излучения dD в единицу времени.

P = dD / dt , Гр/с.

При характеристике поглощения облучения биологическими объектами используют следующие понятия:

1. Эквивалентная доза Н — основная дозиметрическая величина в области радиационной безопасности, введенная для оценки возможного ущерба здоровью человека от хронического воздействия ионизирующего излучения произвольного состава.

Эквивалентная доза равна произведению поглощенной дозы на средний коэффициент качества — к, учитывающий биологическую эффективность разных видов ионизирующих излучений. Измеряется в зивертах, Зв, внесистемная единица — бэр, 1 Зв = 100 бэр.

2. Мощность эквивалентной дозы — приращение эквивалентной дозы в единицу времени. Единица мощности эквивалентной дозы — Зиверт в секунду, Зв/с, 1 Зв/с = 100 бэр/с.

3. Эффективная эквивалентная доза (ЭЭД) Не — сумма произведений эквивалентной дозы, полученной каждым органом НТ, на соответствующий весовой коэффициент WТ, учитывающий различную чувствительность органов к излучению. ЭЭД обеспечивает сравнимость и приведение неравномерного облучения тела к такой же оценке его последствий, как и при равномерном облучении:

Т

Не = HТ WТ .

i=1

Эта величина измеряется в зивертах, Зв. Например, доза облучения легких 1 мЗв соответствует ЭЭД = 0,12 мЗв, т.е. показывает, что при равномерном облучении всего тела дозой 0,12 мЗв вероятность риска от облучения такая же, что и при облучении дозой 1 мЗв только легких.

4.3. Естественные и антропогенные источники ионизирующих излучений

Во всех естественных биотопах всегда наблюдается определенный естественный уровень радиации, даже при отсутствии каких-либо технических источников.

Земная поверхность служит источником многих видов излучения, так как она содержит различные природные радиоактивные элементы: уран, торий, радий, актиний и т.д. Кроме того, в почве и воде встречается два радиоактивных изотопа 40К и 14

С, которые активно внедряются в живой организм. В результате распада природного урана в атмосферу выделяется промежуточный продукт распада — радиоактивный инертный газ радон 222Rn и 219Rn.

Вся биосфера подвергается также воздействию излучений, приходящих из космоса. В состав космического излучения входят протоны (более 90 %), -частицы (7 %), ядра тяжелых элементов (1 %). Подавляющая его часть имеет галактическое происхождение, лишь небольшая часть связана с активностью Солнца. Частицы, составляющие галактическое излучение, имеют огромные энергии и, следовательно, обладают большой проникающей способностью. Мощность поглощенной дозы, создаваемая этими частицами, невелика; в космосе она не превышает 0,2 Гр/год, после прохождения через атмосферу снижается до 3 .10-4 Гр/год. Космическое излучение вызывает различные радиационно-химические процессы в верхних слоях атмосферы. По мере приближения к поверхности Земли его роль становится пренебрежительно малой вследствие уменьшения интенсивности излучения.

Антропогенное изменение радиационной обстановки в биосфере связано в основном с ядерными испытаниями, местами захоронения ядерных отходов и объектами ядерной энергетики. В результате антропогенных процессов в биосфере усилились потоки естественных и искусственных радионуклидов, увеличился естественный фон ионизирующих излучений, возросло число зон повышенного радиационного воздействия.

Основные характеристики ионизирующих излучений. Рассмотрим основные показатели и единицы измерения, применяемые для характеристики ионизирующих излучений

Рассмотрим основные показатели и единицы измерения, применяемые для характеристики ионизирующих излучений. Как уже сказано выше, при распаде ядер атомов его продукты вылетают с большой скоростью. Встречая на своём пути ту или иную преграду, они производят в ее веществе различные изменения.

Воздействие излучения на вещество будет тем больше, чем больше распадов происходит в единицу времени. Для характеристики числа распадов вводится понятие активности (А) радиоактивного вещества, под которым понимают число самопроизвольных ядерных превращений dN в этом веществе за малый промежуток времени dt, деленное на этот промежуток времени:

. (7.1)

Единицей активности является беккерель (Бк). Использовавшаяся ранее внесистемная единица активности кюри (Ки) составляет 3,7 x 1010Бк.

Для характеристики воздействия ионизирующего излучения на вещество введено понятие дозы излучения. Дозой излучения называется часть энергии, переданная излучением веществу и поглощённая им.

Количественной характеристикой взаимодействия ионизирующего излучения и вещества является поглощённая доза излучения (Д), равная отношению средней энергии , переданной ионизирующим излучением веществу в элементарном объёме, к массе облучённого вещества в этом объёме dm:

. (7.2)

Поглощённая доза является основной дозиметрической величиной. В системе СИ в качестве единицы поглощённой дозы принят грей (Гр). 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг, т. е. 1 Гр = 1 Дж/кг. Ранее в качестве единицы поглощённой дозы использовался рад (рд). Он соответствовал поглощению в среднем 0,01Гр.


До недавнего времени за количественную характеристику только рентгеновского и гамма-излучения, основанную на их ионизирующем действии, принималась экспозиционная доза Х – отношение полного электрического заряда dQ ионов одного знака, возникающих в малом объёме сухого воздуха, к массе воздуха dm в этом объёме, т. е.

. (7.3)

Единицей экспозиционной дозы в системе СИ является кулон на килограмм (Кл/кг).

Внесистемной единицей дозы рентгеновского и гамма-излучения является рентген (р).1P = 2,58 • 10-4 Кл/кг = 0,88 рад.

Согласно НРБ 99/2009 понятие экспозиционной дозы не используется для оценки воздействия ионизирующих излучений.

Для различных видов излучения биологический эффект при одинаковой поглощённой дозе оказывается различным. Например, при одинаковой поглощённой дозе α-излучение гораздо опаснее β- или фотонного излучения. Поэтому для оценки возможного ущерба здоровья при хроническом воздействии ионизирующего излучения произвольного состава введено понятие эквивалентной дозы (Н). Эта величина определяется как произведение поглощённой дозы ДT,R в органе или ткани на взвешивающий коэффициент для данного вида излучения, WR, т. е.:

. (7.4)


Единицей эквивалентной дозы в системе СИ является Дж/кг, имеющей специальное понятие зиверт (Зв).

Ранее использовалась специальная единица эквивалентной дозы – биологический эквивалент рентгена (бэр). 1 бэр – это количество энергии любого вида излучения, поглощённого в биологической ткани, биологическое действие которого эквивалентно действию 1 рад рентгеновского или гамма-излучения; 1 Зв = 100 бэр.

При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения:

. (7.5)

Разные органы или ткани имеют разные чувствительности к излучению. Поэтому введено понятие эффективной дозы.

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы (HT) в органах и тканях на соответствующие взвешивающие коэффициенты для органа или ткани (WT):

. (7.6)

Существует ещё одна характеристика ионизирующего излучения – мощность дозы Х (соответственно поглощённой, эффективной или эквивалентной), представляющая собой приращение дозы за малый промежуток времени dx, делённое на этот промежуток dt.

34. Виды, свойства и единицы измерения ионизирующих излучений

34. Виды, свойства и единицы измерения ионизирующих излучений.

Важнейшими продуктами радиоактивного распада, способными при взаимодействии с веществом прямо или косвенно создать в нем заряженные атомы и молекулы – ионы, являются корпускулярные (α, β) и электромагнитные (γ и рентгеновские) излучения. α-излучение представляет собой поток ядер атомов гелия. Защитным экраном от α –излучения может служить лист бумаги, алюминия и т.п. β-излучение представляет собой поток электронов и позитронов, обладающих большей проникающей и меньшей ионизирующей способностью, чем α-частицы. Энергия β-частиц достигает 10 МэВ, а скорость близка к скорости света. Для защиты человека от β-излучения необходима более эффективная изоляция. Алюминиевая или пластмассовая пластина толщиной 5-7 мм или свинцовая толщиной 1 мм полностью поглощает β-излучение. γ -излучение – это жесткое электромагнитное излучение с дискретным спектром, характеризующееся очень короткой длиной волны, большой длиной свободного пробега в воздухе и большой проникающей способностью. γ –излучение сопровождает процессы α и β-распадов. Рентгеновское излучение по своей природе похоже на γ-излучение, но отличается от него меньшей энергией и большей длиной волны. Одной из характеристик радиоактивного вещества является его активность А- т.е. число ядерных превращений в этом веществе за малый промежуток времени. Единицей активности в системе единиц СИ является беккерель (Бк), равный одному ядерному распаду в секунду. Внесистемной единицей активности служит кюри. Действие ионизирующих излучений оценивается так называемой дозой излучения. Различают поглощенную, экспозиционную и эквивалентную дозы. Поглощенная доза- это отношение средней энергии, переданной излучением веществу в некотором элементарном объеме, к массе вещества в этом объеме. Единицей поглощенной дозы в системе единиц СИ является грей. Величина поглощенной дозы зависит от вида излучений, энергии его частиц, плотности их потока и состава облучаемого вещества. Во всех случаях поглощенная доза пропорциональна времени облучения, и со временем она накапливается в веществе. Экспозиционная доза – это мера ионизации воздуха под действием рентгеновских или γ-излучений. Она представляет собой отношение суммарного заряда всех ионов одного знака, созданных в воздухе, при полном торможении всех вторичных электронов, образованных фотонами в малом объеме воздуха с массой, к массе воздуха в этом объеме. Единица экспозиционной дозы в системе СИ- кулон, деленный на кг. Внесистемной единицей экспозиционной дозы рентгеновского и γ-излучений является рентген. Радиевый γ-эквивалент препарата – величина, которая служит для сравнения радиоактивных препаратов, создающих γ-излучения. Эквивалентная доза ионизирующего излучения – величина, введенная для оценки радиационной опасности хронического облучения излучением произвольного состава. Она определяется как произведение поглощенной дозы и среднего коэффициента качества этого излучения. Коэффициент качества показывает, во сколько раз радиационная опасность облучения данного вида выше радиационной опасности рентгеновского излучения при одинаковой поглощенной дозе тканями организма. Единицей эквивалентной дозы в системе СИ является зиверт. Бэр- внесистемная единица эквивалентной дозы облучения.

4.2. Единицы измерения ионизирующих излучений

Активность источника радиационного излучения характеризуется числом ядерных превращений в единицу времени и выражается в беккерелях (Бк): 1Бк = 1 распад в секунду (внесистемная единица Кюри — Кu = 3,7. 1010 Бк).

Поле, создаваемое источником ионизирующего излучения, имеет следующие характеристики:

1. Экспозиционная доза рентгеновского и гамма-излучения D0 определяется по ионизации воздуха. Она представляет собой отношение суммарного заряда dQ всех ионов одного знака, созданных в воздухе, когда все электроны и позитроны, освобожденные фотонами в элементарном объеме воздуха массой dm, полностью остановились, к массе воздуха в указанном обьеме:

D0 = dQ / dm

Единица измерения — кулон на килограмм, Кл/кг. Используется и внесистемная единица измерения — рентген, Р ( 1 Р = 2,25 . 10-4 Кл/кг ).

2. Мощность экспозиционной дозы P0— приращение экспозиционной дозы в единицу времени:

P0 = dD0 / dt

Единица измерения — Ампер на килограмм, А/кг. Внесистемная единица Р/с (1 А/кг = 3,88 Р/с).

Поглощение энергии излучения объектами неживой природы характеризуется следующими параметрами:

1. Поглощенная доза излучения D — это энергия ионизирующего излучения dE, поглощенная облучаемым веществом и рассчитанная на единицу его массы:

D = dE / dm

Единица измерения поглощенной дозы — грей, Гр. Внесистемная единица рад, 1 Гр = 100 рад = 1 Дж/кг.

2. Мощность поглощенной дозы Р — приращение поглощенной дозы излучения dD в единицу времени.

P = dD / dt , Гр/с.

При характеристике поглощения облучения биологическими объектами используют следующие понятия:

1. Эквивалентная доза Н — основная дозиметрическая величина в области радиационной безопасности, введенная для оценки возможного ущерба здоровью человека от хронического воздействия ионизирующего излучения произвольного состава.

Эквивалентная доза равна произведению поглощенной дозы на средний коэффициент качества — к, учитывающий биологическую эффективность разных видов ионизирующих излучений. Измеряется в зивертах, Зв, внесистемная единица — бэр, 1 Зв = 100 бэр.

2. Мощность эквивалентной дозы — приращение эквивалентной дозы в единицу времени. Единица мощности эквивалентной дозы — Зиверт в секунду, Зв/с, 1 Зв/с = 100 бэр/с.

3. Эффективная эквивалентная доза (ЭЭД) Не — сумма произведений эквивалентной дозы, полученной каждым органом НТ, на соответствующий весовой коэффициент WТ, учитывающий различную чувствительность органов к излучению. ЭЭД обеспечивает сравнимость и приведение неравномерного облучения тела к такой же оценке его последствий, как и при равномерном облучении:

Т

Не = HТ WТ .

i=1

Эта величина измеряется в зивертах, Зв. Например, доза облучения легких 1 мЗв соответствует ЭЭД = 0,12 мЗв, т.е. показывает, что при равномерном облучении всего тела дозой 0,12 мЗв вероятность риска от облучения такая же, что и при облучении дозой 1 мЗв только легких.

4.3. Естественные и антропогенные источники ионизирующих излучений

Во всех естественных биотопах всегда наблюдается определенный естественный уровень радиации, даже при отсутствии каких-либо технических источников.

Земная поверхность служит источником многих видов излучения, так как она содержит различные природные радиоактивные элементы: уран, торий, радий, актиний и т.д. Кроме того, в почве и воде встречается два радиоактивных изотопа 40К и 14С, которые активно внедряются в живой организм. В результате распада природного урана в атмосферу выделяется промежуточный продукт распада — радиоактивный инертный газ радон 222Rn и 219Rn.

Вся биосфера подвергается также воздействию излучений, приходящих из космоса. В состав космического излучения входят протоны (более 90 %), -частицы (7 %), ядра тяжелых элементов (1 %). Подавляющая его часть имеет галактическое происхождение, лишь небольшая часть связана с активностью Солнца. Частицы, составляющие галактическое излучение, имеют огромные энергии и, следовательно, обладают большой проникающей способностью. Мощность поглощенной дозы, создаваемая этими частицами, невелика; в космосе она не превышает 0,2 Гр/год, после прохождения через атмосферу снижается до 3 .10-4 Гр/год. Космическое излучение вызывает различные радиационно-химические процессы в верхних слоях атмосферы. По мере приближения к поверхности Земли его роль становится пренебрежительно малой вследствие уменьшения интенсивности излучения.

Антропогенное изменение радиационной обстановки в биосфере связано в основном с ядерными испытаниями, местами захоронения ядерных отходов и объектами ядерной энергетики. В результате антропогенных процессов в биосфере усилились потоки естественных и искусственных радионуклидов, увеличился естественный фон ионизирующих излучений, возросло число зон повышенного радиационного воздействия.

12.1.3 Единицы измерения радиоактивности и ионизирующих излучений

Единицы радиоактивности

В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин — «один распад в секунду» (расп/с). В системе СИ эта единица получила название «беккерель» (Бк). В практике радиационного контроля широко используется внесистемная единица активности — «кюри» (Ки). Один кюри — это 3,7х1010 распадов в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы.

Единицы ионизирующих излучений

Для измерения величин, характеризующих ионизирующее излучение, исторически появилась единица «рентген». Эта единица определяется как доза рентгеновского или гамма-излучения в воздухе, при которой сопряженная корпускулярная эмиссия на 0, 001293 г воздуха производит в воздухе ионы, не-сущие заряд в 1 эл.-ст. ед. ионов каждого знака здесь 0,001293 г ? масса 1 см3 атмосферного воздуха при 0 оС и давлении 760 мм рт. ст.).

Экспозиционная доза — мера ионизационного действия рентгеновского или гамма-излучений, определяемая по ионизации воздуха.

В СИ единицей экспозиционной дозы является «один кулон на килограмм» (Кл/кг). Внесистемной единицей является «рентген» (Р), 1 Р = 2,58х10-4 Кл/кг. В свою очередь 1 Кл/кг = 3,88х103 Р.

Мощность экспозиционной дозы — приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ — «ампер на килограмм» (А/кг). Однако в большинстве случаев на практике пользуются внесистемной единицей «рентген в секунду» (Р/с) или «рентген в час» (Р/ч).

Поглощенная доза — энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. Чем продолжительнее время облучения, тем больше поглощенная доза. При одинаковых условиях облучения доза зависит от состава вещества. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица «грей» (Гр). 1 грей — это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг.

Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.

Мощность поглощенной дозы — это приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ — «грей в секунду» (Гр/с). Это такая мощность поглощенной дозы облучения, при которой за 1 св веществе создается доза облучения 1 Гр.

На практике для оценки поглощенной дозы широко используют внесистемную единицу мощности поглощенной дозы «рад в час» (рад/ч) или «рад в секунду» (рад/с).

Эквивалентная доза — это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов ионизирующих излучений. Определяется она по формуле: Дэкв = Q . Д, где Д — поглощенная доза данного вида излучения; Q — коэффициент качества излучения, который составляет для рентгеновского, гамма- и бета-излучений 1, для нейтронов с энергией от 0,1 до 10, для альфа — излучения с энергией менее 10 Мэв 20. Из приведенных данных видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и 20 раз больший поражающий эффект.

В системе СИ эквивалентная доза измеряется в «зивертах» (Зв).

Бэр (биологический эквивалент рентгена) — это внесистемная единица эквивалентной дозы. Бэр — такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества гамма-излучения равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад = 1 Р.

Мощность эквивалентной дозы — отношение приращения эквивалентной дозы за единицу времени и выражается в «зивертах в секунду» (Зв/с). Поскольку время пребывания человека в поле облучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в «микрозивертах в час» (мкЗв/ч).

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения — при дозах выше 0,5 Зв (бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. В таблице 3 приведены дозиметрические величины и единицы их измерения.

12.1.3 Единицы измерения радиоактивности и ионизирующих излучений

Единицы радиоактивности

В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин — «один распад в секунду» (расп/с). В системе СИ эта единица получила название «беккерель» (Бк). В практике радиационного контроля широко используется внесистемная единица активности — «кюри» (Ки). Один кюри — это 3,7х1010 распадов в секунду.

Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Она выражается в единицах активности на единицу массы.

Единицы ионизирующих излучений

Для измерения величин, характеризующих ионизирующее излучение, исторически появилась единица «рентген». Эта единица определяется как доза рентгеновского или гамма-излучения в воздухе, при которой сопряженная корпускулярная эмиссия на 0, 001293 г воздуха производит в воздухе ионы, не-сущие заряд в 1 эл.-ст. ед. ионов каждого знака здесь 0,001293 г ? масса 1 см3 атмосферного воздуха при 0 оС и давлении 760 мм рт. ст.).

Экспозиционная доза — мера ионизационного действия рентгеновского или гамма-излучений, определяемая по ионизации воздуха.

В СИ единицей экспозиционной дозы является «один кулон на килограмм» (Кл/кг). Внесистемной единицей является «рентген» (Р), 1 Р = 2,58х10-4 Кл/кг. В свою очередь 1 Кл/кг = 3,88х103 Р.

Мощность экспозиционной дозы — приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ — «ампер на килограмм» (А/кг). Однако в большинстве случаев на практике пользуются внесистемной единицей «рентген в секунду» (Р/с) или «рентген в час» (Р/ч).

Поглощенная доза — энергия радиоактивного излучения, поглощенная единицей массы облучаемого вещества или человеком. Чем продолжительнее время облучения, тем больше поглощенная доза. При одинаковых условиях облучения доза зависит от состава вещества. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица «грей» (Гр). 1 грей — это такая единица поглощенной дозы, при которой 1 кг облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг.

Поглощенная доза излучения является основной физической величиной, определяющей степень радиационного воздействия.

Мощность поглощенной дозы — это приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе СИ — «грей в секунду» (Гр/с). Это такая мощность поглощенной дозы облучения, при которой за 1 с в веществе создается доза облучения 1 Гр.

На практике для оценки поглощенной дозы широко используют внесистемную единицу мощности поглощенной дозы «рад в час» (рад/ч) или «рад в секунду» (рад/с).

Эквивалентная доза — это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов ионизирующих излучений. Определяется она по формуле: Дэкв = Q . Д, где Д — поглощенная доза данного вида излучения; Q — коэффициент качества излучения, который составляет для рентгеновского, гамма- и бета-излучений 1, для нейтронов с энергией от 0,1 до 10, для альфа — излучения с энергией менее 10 Мэв 20. Из приведенных данных видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают соответственно в 10 и 20 раз больший поражающий эффект.

В системе СИ эквивалентная доза измеряется в «зивертах» (Зв).

Бэр (биологический эквивалент рентгена) — это внесистемная единица эквивалентной дозы. Бэр — такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения. Поскольку коэффициент качества гамма-излучения равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад = 1 Р.

Мощность эквивалентной дозы — отношение приращения эквивалентной дозы за единицу времени и выражается в «зивертах в секунду» (Зв/с). Поскольку время пребывания человека в поле облучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражать мощность эквивалентной дозы в «микрозивертах в час» (мкЗв/ч).

Согласно заключению Международной комиссии по радиационной защите, вредные эффекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения — при дозах выше 0,5 Зв (бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь. В таблице 3 приведены дозиметрические величины и единицы их измерения.

БИПМ — ионизирующее излучение

Брошюра

SI, из раздела 2.3.4


photo of Henri Becquerel

photo of Henri Becquerel Ранние работы Анри Беккереля были связаны с поляризацией света, феноменом фосфоресценции и поглощением света кристаллами (его докторская диссертация). Он был избран членом Французской академии наук в 1889 году. За открытие естественной радиоактивности в 1896 году Анри Беккерель получил половину награды. лауреата Нобелевской премии по физике в 1903 году, а вторая половина была присуждена Пьеру и Марии Кюри за их исследование излучения Беккереля.Вот почему Генеральная конференция по мерам и весам (CGPM) 1975 года (Резолюция 8) решила почтить память Анри Беккереля, приняв для СИ специальное название — беккерель, Bq. производная единица деятельности. Это предложение было внесено Международной комиссией по радиационным единицам и измерениям (ICRU) и принято Консультативный комитет по единицам (CCU) как Рекомендация U 1 (1974), более ранняя несистемная единица была названа в честь Кюри.

Для получения дополнительной биографической информации см .:

photo of Henri Becquerel Хэл Грей вместе с Резерфордом (1927-1932) работал в Кавендишской лаборатории в Кембридже, Великобритания, над поглощением гамма-лучей веществом.Результатом этого исследования стал принцип Брэгга-Грея, приложение из которых позволили измерить переданную и поглощенную дозу. Вот почему серый цвет был предложен в качестве специального названия производной единицы СИ, связанной с этими величинами Международная комиссия по радиационным единицам и измерениям (ICRU), бывшим заместителем председателя которой был Хэл Грей.

Консультативный комитет по единицам (CCU) принял это предложение 1974 г. (Рекомендация U 1 (1974 г.)). Впоследствии 15-я Генеральная конференция по мерам и весам (CGPM) приняла специальное название серый, Gy, для включения в SI в 1975 году. (Резолюция 9).В самом деле, имя Грея также увековечено в Серой лаборатории радиобиологических исследований, базирующейся в больнице Маунт-Вернон в Великобритании (где он работал с 1933 года), в Gray Trust. который спонсирует проводимую раз в два года Серую конференцию и получил Серую медаль, присуждаемую ICRU. Биографии см. В Новости ICRU за июнь 1997 г., Биографические мемуары Королевского общества, а также на веб-сайтах Серой лаборатории и Института серого рака.

photo of Henri Becquerel Рольф Зиверт разработал камеру Зиверта для измерения дозы облучения и интеграл Зиверта для расчета облучения в точке P .Он был одним из первых членов Международной комиссии по радиологической защите (МКРЗ). и Международная комиссия по радиационным единицам и измерениям (ICRU). Так как Будучи пионером в области радиационной защиты, он отвечал за инициирование первого шведского закона о радиационной защите, принятого в 1941 году, и за разработку планов для Шведского управления радиационной безопасности, SSM. Рольф Зиверт посвятил большую часть своей жизни вопросам радиационной защиты и был избран председателем МКРЗ с 1956 по 1962 год.

В его честь Генеральная конференция мер и весов (CGPM) в Резолюции 5 от 1979 года приняла зиверт, Зв, в качестве специального названия производной единицы СИ для величины радиационной защиты, эквивалента дозы. Это было предложено ICRP и ICRU и принято Консультативным комитетом по Единицы (CCU) как Рекомендация U 1 (1978). Для биографии см. Каролинский институт.

photo of Henri Becquerel Сентябрь 1910 г.

Радиологический конгресс собрался в Брюсселе и учредил Международную комиссию по радиоактивности (Commission Internationale de Radioactivité).Г-жу М. Кюри попросили подготовить международный стандарт радия.

photo of Henri Becquerel 18 марта 1912 г.

А. Дебьерн адресовал письмо Ш.-Эд. Гийом (в то время заместитель директора BIPM) спрашивает его, желает ли BIPM сохранить эталон радия.

photo of Henri Becquerel 12 мая 1912

С. Мейер, секретарь Международной комиссии по эталонам радиума, поблагодарил Р.Бенуа, Директора BIPM, за согласие соблюдать стандарт.

photo of Henri Becquerel 21 февраля 1913

Штандарт сдан «в нижнюю часть сейфа, находящегося в первом хранилище».

photo of Henri Becquerel с 1913 по 1935 год

В общей сложности восемь раз международный стандарт был взят для различных сравнений в Laboratoire Curie и возвращен в хранилище BIPM.После последнего использования он хранился в Лаборатории Кюри.

photo of Henri Becquerel 1934

О. Хенигшмид приготовил двадцать эталонов радия из урана, происходящего из Верхней Катанги, с высоким процентом радия, свободного от мезотория. Среди них образец № 5430 с массой, почти идентичной массе «стандарта Кюри», был назначен Франции и передан Лаборатории Кюри.

photo of Henri Becquerel 21 апреля 1939

Стандарт No.5430 было депонировано в BIPM.

photo of Henri Becquerel 30 мая 1940

Штандарт был перевезен на хранение за пределы Парижа.

photo of Henri Becquerel Октябрь 1948 г.

На 9-й сессии ГКБП советская делегация предложила «организовать сличения национальных эталонов радия с международными эталонами радия и вести их в Международном бюро».

photo of Henri Becquerel июль 1953

Совместная комиссия по радиоактивности (Commission mixte de radioactivité), собравшаяся в Стокгольме, передала стандарт No.5430 директору Радиевого института (Institut du Radium).

photo of Henri Becquerel 3 декабря 1959 г.

Факультет наук Парижа, которому принадлежал Радиевый институт, решил доверить BIPM эталон радия № 5430. Этот эталон остался «собственностью Парижского университета».

photo of Henri Becquerel Октябрь 1960

11-я ГКБМ уполномочила BIPM поддерживать стандарт радия No.5430.

photo of Henri Becquerel 9 марта 1961

Парижский университет подарил эталон BIPM, и в 1963 году было организовано международное сравнение радиевых эталонов. Позже необходимость в наличии таких эталонов заменили методы первичных измерений и введение определения активности в системе СИ.

photo of Henri Becquerel 22 января 1993

После надежного хранения артефакта в BIPM еще тридцать два года, радиевый эталон 5430 был окончательно утилизирован французскими властями как радиоактивные отходы в соответствии с международными рекомендациями по безопасности.

.

Виды излучения: ионизирующие и неионизирующие излучения

    • Классы
      • Класс 1–3
      • Класс 4–5
      • Класс 6–10
      • Класс 11–12
    • КОНКУРЕНТНЫЙ ЭКЗАМЕН
      • BNAT 000 000 NC Книги
        • Книги NCERT для класса 5
        • Книги NCERT для класса 6
        • Книги NCERT для класса 7
        • Книги NCERT для класса 8
        • Книги NCERT для класса 9
        • Книги NCERT для класса 10
        • Книги NCERT для класса 11
        • Книги NCERT для класса 12
      • NCERT Exemplar
        • NCERT Exemplar Class 8
        • NCERT Exemplar Class 9
        • NCERT Exemplar Class 10
        • NCERT Exemplar Class 11
        • 9000 9000
        • NCERT Exemplar Class
          • Решения RS Aggarwal, класс 12
          • Решения RS Aggarwal, класс 11
          • Решения RS Aggarwal, класс 10
          • 90 003 Решения RS Aggarwal класса 9
          • Решения RS Aggarwal класса 8
          • Решения RS Aggarwal класса 7
          • Решения RS Aggarwal класса 6
        • Решения RD Sharma
          • RD Sharma Class 6 Решения
          • Решения RD Sharma
          • Решения RD Sharma класса 8
          • Решения RD Sharma класса 9
          • Решения RD Sharma класса 10
          • Решения RD Sharma класса 11
          • Решения RD Sharma класса 12
        • PHYSICS
          • Механика
          • Оптика
          • Термодинамика Электромагнетизм
        • ХИМИЯ
          • Органическая химия
          • Неорганическая химия
          • Периодическая таблица
        • MATHS
          • Теорема Пифагора
          • 0004
          • 000300030004
          • Простые числа
          • Взаимосвязи и функции
          • Последовательности и серии
          • Таблицы умножения
          • Детерминанты и матрицы
          • Прибыль и убыток
          • Полиномиальные уравнения
          • Деление фракций
        • 000
        • 000
        • 000
        • 000
        • 000
        • 000 Microology
        • 000
        • 000 Microology
        • 000 BIOG3000
            FORMULAS
            • Математические формулы
            • Алгебраические формулы
            • Тригонометрические формулы
            • Геометрические формулы
          • КАЛЬКУЛЯТОРЫ
            • Математические калькуляторы
            • 0003000 PBS4000
            • 000300030002 Примеры калькуляторов химии
            • Класс 6
            • Образцы бумаги CBSE для класса 7
            • Образцы бумаги CBSE для класса 8
            • Образцы бумаги CBSE для класса 9
            • Образцы бумаги CBSE для класса 10
            • Образцы бумаги CBSE для класса 11
            • Образцы бумаги CBSE чел для класса 12
          • CBSE Контрольный документ за предыдущий год
            • CBSE Контрольный документ за предыдущий год Класс 10
            • Контрольный документ за предыдущий год CBSE, класс 12
          • HC Verma Solutions
            • HC Verma Solutions Class 11 Physics
            • Решения HC Verma, класс 12, физика
          • Решения Лакмира Сингха
            • Решения Лакмира Сингха, класс 9
            • Решения Лакмира Сингха, класс 10
            • Решения Лакмира Сингха, класс 8
          • Заметки CBSE
            • CBSE Notes
                Примечания CBSE класса 7
              • Примечания CBSE класса 8
              • Примечания CBSE класса 9
              • Примечания CBSE класса 10
              • Примечания CBSE класса 11
              • Примечания CBSE класса 12
            • Примечания к редакции CBSE
              • Примечания к редакции
                • CBSE Class
                  • Примечания к редакции класса 10 CBSE
                  • Примечания к редакции класса 11 CBSE 9000 4
                  • Примечания к редакции класса 12 CBSE
                • Дополнительные вопросы CBSE
                  • Дополнительные вопросы по математике класса 8 CBSE
                  • Дополнительные вопросы по науке 8 класса CBSE
                  • Дополнительные вопросы по математике класса 9 CBSE
                  • Дополнительные вопросы по науке класса 9 CBSE
                  • Дополнительные вопросы по математике для класса 10
                  • Дополнительные вопросы по науке, класс 10 по CBSE
                • CBSE, класс
                  • , класс 3
                  • , класс 4
                  • , класс 5
                  • , класс 6
                  • , класс 7
                  • , класс 8
                  • , класс 9 Класс 10
                  • Класс 11
                  • Класс 12
                • Учебные решения
              • Решения NCERT
                • Решения NCERT для класса 11
                  • Решения NCERT для класса 11 по физике
                  • Решения NCERT для класса 11 Химия
                  • Решения для биологии класса 11
                  • Решения NCERT для математики класса 11
                  • 9 0003 NCERT Solutions Class 11 Accountancy
                  • NCERT Solutions Class 11 Business Studies
                  • NCERT Solutions Class 11 Economics
                  • NCERT Solutions Class 11 Statistics
                  • NCERT Solutions Class 11 Commerce
                • NCERT Solutions For Class 12
                  • NCERT Solutions For Класс 12 по физике
                  • Решения NCERT для химии класса 12
                  • Решения NCERT для класса 12 по биологии
                  • Решения NCERT для класса 12 по математике
                  • Решения NCERT Класс 12 Бухгалтерия
                  • Решения NCERT, класс 12, бизнес-исследования
                  • Решения NCERT, класс 12 Экономика
                  • NCERT Solutions Class 12 Accountancy Part 1
                  • NCERT Solutions Class 12 Accountancy Part 2
                  • NCERT Solutions Class 12 Micro-Economics
                  • NCERT Solutions Class 12 Commerce
                  • NCERT Solutions Class 12 Macro-Economics
                • NCERT Solutions For Класс 4
                  • Решения NCERT для математики класса 4
                  • Решения NCERT для класса 4 EVS
                • Решения NCERT для класса 5
                  • Решения NCERT для математики класса 5
                  • Решения NCERT для класса 5 EVS
                • Решения NCERT для класса 6
                  • Решения NCERT для математики класса 6
                  • Решения NCERT для науки класса 6
                  • Решения NCERT для социальных наук класса 6
                  • Решения NCERT для класса 6 Английский
                • Решения NCERT для класса 7
                  • Решения NCERT для класса 7 Математика
                  • Решения NCERT для класса 7 Наука
                  • Решения NCERT для класса 7 по социальным наукам
                  • Решения NCERT для класса 7 Английский
                • Решения NCERT для класса 8
                  • Решения NCERT для класса 8 Математика
                  • Решения NCERT для класса 8 Science
                  • Решения NCERT для социальных наук 8 класса
                  • Решение NCERT ns для класса 8 Английский
                • Решения NCERT для класса 9
                  • Решения NCERT для социальных наук класса 9
                • Решения NCERT для математики класса 9
                  • Решения NCERT для математики класса 9 Глава 1
                  • Решения NCERT для Математика класса 9 Глава 2
                  • Решения NCERT для математики класса 9 Глава 3
                  • Решения NCERT для математики класса 9 Глава 4
                  • Решения NCERT
                  • для математики класса 9 Глава 5
                  • Решения NCERT для математики класса 9 Глава 6
                  • Решения NCERT для Математика класса 9 Глава 7
                  • Решения NCERT для математики класса 9 Глава 8
                  • Решения NCERT
                  • для математики класса 9 Глава 9
                  • Решения NCERT
                  • для математики класса 9 Глава 10
                  • Решения NCERT для математики класса 9 Глава 11
                  • Решения NCERT для Математика класса 9 Глава 12
                  • Решения NCERT для математики класса 9 Глава 13
                  • Решения
                  • NCERT для математики класса 9 Глава 14
                  • Решения NCERT для математики класса 9 Глава 15
                • Решения NCERT для науки класса 9
                  • Решения NCERT для науки класса 9 Глава 1
                  • Решения NCERT для науки класса 9 Глава 2
                  • Решения NCERT для класса 9 Наука Глава 3
                  • Решения NCERT для Науки Класса 9 Глава 4
                  • Решения NCERT для Науки Класса 9 Глава 5
                  • Решения NCERT для Науки Класса 9 Глава 6
                  • Решения NCERT для Науки Класса 9 Глава 7
                  • Решения NCERT для Класса 9 Наука Глава 8
                  • Решения NCERT для Науки Класса 9 Глава 9
                  • Решения NCERT для Науки Класса 9 Глава 10
                  • Решения NCERT для Науки Класса 9 Глава 12
                  • Решения NCERT для Науки Класса 9 Глава 11
                  • Решения NCERT для Класса 9 Наука Глава 13
                  • Решения NCERT для класса 9 Наука Глава 14
                  • Решения NCERT для класса 9 по науке Глава 15
                • Решения NCERT для класса 10
                  • Решения NCERT для класса 10 по социальным наукам
                • Решения NCERT для математики класса 10
                  • Решения NCERT для математики класса 10 Глава 1
                  • Решения NCERT для математики класса 10 Глава 2
                  • Решения NCERT для математики класса 10 Глава 3
                  • Решения NCERT для математики класса 10 Глава 4
                  • Решения NCERT для математики класса 10 Глава 5
                  • Решения NCERT для математики класса 10 Глава 6
                  • Решения NCERT для математики класса 10 Глава 7
                  • Решения NCERT для математики класса 10 Глава 8
                  • Решения NCERT для математики класса 10 Глава 9
                  • Решения NCERT
                  • для математики класса 10 Глава 10
                  • Решения
                  • NCERT для математики класса 10 Глава 11
                  • Решения NCERT для математики класса 10 Глава 12
                  • Решения NCERT для математики класса 10 Глава 13
                  • NCERT Sol Решения NCERT для математики класса 10 Глава 14
                  • Решения NCERT для математики класса 10 Глава 15
                • Решения NCERT для науки класса 10
                  • Решения NCERT для науки класса 10 Глава 1
                  • Решения NCERT для науки класса 10 Глава 2
                  • Решения NCERT для науки класса 10, глава 3
                  • Решения NCERT для науки класса 10, глава 4
                  • Решения NCERT для науки класса 10, глава 5
                  • Решения NCERT для науки класса 10, глава 6
                  • Решения NCERT для науки класса 10, глава 7
                  • Решения NCERT для науки 10 класса, глава 8
                  • Решения NCERT для науки класса 10 Глава 9
                  • Решения NCERT для науки класса 10 Глава 10
                  • Решения NCERT для науки класса 10 Глава 11
                  • Решения NCERT для науки класса 10 Глава 12
                  • Решения NCERT для науки 10 класса Глава 13
                  • Решения NCERT для науки 10 класса Глава 14
                  • Решения NCERT для науки 10 класса Глава 15
                  • Решения NCERT для науки 10 класса Глава 16
                • Учебный план NCERT
                • NCERT
              • Commerce
                • Class 11 Commerce Syllabus
                    ancy Account
                  • Программа бизнес-исследований 11 класса
                  • Учебная программа по экономике 11 класса
                • Учебная программа по коммерции 12 класса
                  • Учебная программа по бухгалтерии 12 класса
                  • Учебная программа по бизнесу 12 класса
                  • Учебная программа по экономике
                  • 9000 9000
                      • Образцы документов по коммерции класса 11
                      • Образцы документов по коммерции класса 12
                    • TS Grewal Solutions
                      • TS Grewal Solutions Class 12 Accountancy
                      • TS Grewal Solutions Class 11 Accountancy
                    • Отчет о движении денежных средств
                    • Что такое Entry eurship
                    • Защита прав потребителей
                    • Что такое основной актив
                    • Что такое баланс
                    • Формат баланса
                    • Что такое акции
                    • Разница между продажами и маркетингом
                  • ICSE
                    • Документы
                    • ICSE
                    • Вопросы ICSE
                    • ML Aggarwal Solutions
                      • ML Aggarwal Solutions Class 10 Maths
                      • ML Aggarwal Solutions Class 9 Maths
                      • ML Aggarwal Solutions Class 8 Maths
                      • ML Aggarwal Solutions Class 7 Maths
                      • ML 6 Maths
                      • ML 6 Maths
                    • Selina Solutions
                      • Selina Solutions для класса 8
                      • Selina Solutions для Class 10
                      • Selina Solutions для Class 9
                    • Frank Solutions
                      • Frank Solutions для математики класса 10
                      • Frank Solutions для математики класса 9
                    • Класс ICSE 9000 2
                    • ICSE Class 6
                    • ICSE Class 7
                    • ICSE Class 8
                    • ICSE Class 9
                    • ICSE Class 10
                    • ISC Class 11
                    • ISC Class 12
                • IAS
                    Exam
                  • IAS
                  • Civil
                  • Сервисный экзамен
                  • Программа UPSC
                  • Бесплатная подготовка к IAS
                  • Текущие события
                  • Список статей IAS
                  • Пробный тест IAS 2019
                    • Пробный тест IAS 2019 1
                    • Пробный тест IAS 2019 2
                  • Экзамен KPSC KAS
                  • Экзамен UPPSC PCS
                  • Экзамен MPSC
                  • Экзамен RPSC RAS ​​
                  • TNPSC Group 1
                  • APPSC Group 1
                  • Экзамен BPSC
                  • WBPS3000 Экзамен 9C 9000 MPC 9000 9000 Jam
                • Вопросник UPSC 2019
                  • Ключ ответов UPSC 2019
                • Коучинг IAS
                  • IA S Coaching Бангалор
                  • IAS Coaching Дели
                  • IAS Coaching Ченнаи
                  • IAS Coaching Хайдарабад
                  • IAS Coaching Мумбаи
              • JEE
                • BYJU’SEE
                • 9000 JEE 9000 Основной документ JEE 9000 JEE 9000
                • Вопросник JEE
                • Биномиальная теорема
                • Статьи JEE
                • Квадратичное уравнение
              • NEET
                • Программа BYJU NEET
                • NEET 2020
                • NEET Приемлемость 9000 Критерии 9000 NEET4 9000 Пример 9000 NEET 9000 9000 NEET
                • Поддержка
                  • Разрешение жалоб
                  • Служба поддержки клиентов
                  • Центр поддержки
              • Государственные советы
                • GSEB
                  • GSEB Syllabus
                  • GSEB4
                  • GSEB3 Образец статьи
                  • 004
                  • MSBSHSE
                    • MSBSHSE Syllabus
                    • MSBSHSE Учебники
                    • Образцы статей MSBSHSE
                    • Вопросники MSBSHSE
                  • AP Board
                    • APSCERT
                    • APS4
                    • Syll
                    • AP
                    • Syll 9000SC4
                    • Syll 9000SC4 9000 Syll
                  • MP Board
                    • MP Board Syllabus
                    • MP Board Образцы документов
                    • Учебники MP Board
                  • Assam Board
                    • Assam Board Syllabus
                    • Assam Board Учебники 9000 9000 Board4 BSEB
                      • Bihar Board Syllabus
                      • Bihar Board Учебники
                      • Bihar Board Question Papers
                      • Bihar Board Model Papers
                    • BSE Odisha
                      • Odisha Board Syllabus
                      • Odisha Board Syllabus
                      • Программа PSEB
                      • Учебники PSEB
                      • Вопросы PSEB
                    • RBSE
                      • Rajasthan Board Syllabus
                      • RBSE Учебники
                      • RBSE Question Papers
                    • HPBOSE
                    • HPBOSE
                    • 000 Syllab HPBOSE
                    • JKBOSE
                      • Программа JKBOSE
                      • Образцы документов JKBOSE
                      • Шаблон экзамена JKBOSE
                    • TN Board
                      • TN Board Syllabus
                      • TN Board 9000 Papers 9000 TN Board 9000 Papers 9000 TN Board 9000 Papers 9000 TN Board 9000 Papers 9000 Paper 9000 Paper
                      • JAC
                        • Учебник JAC
                        • Учебники JAC
                        • Вопросники JAC
                      • Telangana Board
                        • Telangana Board Syllabus
                        • Telangana Board Учебники
                        • Papers
                        • Telangana Board Учебники
                        • KSEEB Syllabus
                        • Типовые вопросы KSEEB
                      • KBPE
                        • KBPE Syllabus
                        • Учебники KBPE
                        • KBPE Вопросы
                      • 9000 UPMSP Board 9000 UPMSP Board2
                    • Совет по Западной Бенгалии
                      • Учебный план Совета по Западной Бенгалии
                      • Учебники по Совету по Западной Бенгалии
                      • Вопросы для Совета по Западной Бенгалии
                    • UBSE
                    • TBSE
                    • Гоа Совет
                    • 000
                    • NBSE000
                    • Mega Board
                    • Manipur Board
                    • Haryana Board
                  • Государственные экзамены
                    • Банковские экзамены
                      • Экзамены SBI
                      • Экзамены IBPS
                      • Экзамены RBI
                      • IBPS

                        03
                      • Экзамены SSC
                      • 9SC2

                      • SSC GD
                      • SSC CPO 900 04
                      • SSC CHSL
                      • SSC CGL
                    • Экзамены RRB
                      • RRB JE
                      • RRB NTPC
                      • RRB ALP
                    • O Экзамены на страхование
                    • LIC4
                    • LIC4 9000 ADF UPSC CAPF
                    • Список статей государственных экзаменов
                  • Обучение детей
                    • Класс 1
                    • Класс 2
                    • Класс 3
                  • Академические вопросы
                    • Вопросы по физике
                    • Вопросы по химии
                    • Вопросы по химии
                    • Вопросы
                    • Вопросы по науке
                    • Вопросы для общего доступа
                  • Онлайн-обучение
                    • Домашнее обучение
                  • Полные формы
                  • CAT
                    • BYJU’S CAT Program
                    • CAT3 9000 Предварительный курс CAT3
                    • Экзамен 9000 9000 CAT3 Экзамен Шаблон экзамена CAT 2020
                    • Обзор приложения Byju по CAT
                • КУПИТЬ КУРС
              .

              БИПМ — ионизирующее излучение

              Ионизирующие излучения сегодня присутствуют во многих аспектах жизни, включая излучение, возникающее естественным образом в окружающей среде — например, от радионуклидов, обнаруженных в воздухе (продукты распада радона), почве, пище, воде и организме человека, а также космогенез и космические лучи и искусственно созданные излучения, такие как:

              • медицинских применений рентгеновского излучения (кВ трубки и ускорители среднего напряжения), гамма-излучения от источников внешнего пучка / брахитерапии и короткоживущих радионуклидов, используемых в ядерной медицине ( 99m Tc, другие радионуклиды ОФЭКТ, ПЭТ), а также как и другие новые методы (например,грамм. адронная и нейтронная терапия),
              • Атомный цикл, сбросы и отходы,
              • радиоактивные осадки в результате аварийных ситуаций в атомной промышленности и испытаний ядерного оружия,
              • облучательных установок с использованием источников гамма-излучения ( 60 Co, 137 Cs) или ускорителей электронов для стерилизации (продукты питания, медицинское оборудование), промышленной радиографии или радиационной обработки для восстановления окружающей среды (дымовые газы, сточные воды, осадок сточных вод),
              • научно-исследовательских центров для пучков фотонов / частиц высокой энергии или рентгеновских фотонов низкой энергии в нанотехнологиях.

              Рассмотрим влияние на здравоохранение:

              • 35 миллионов медицинских осмотров в год с использованием радионуклидов,
              • 4 миллиарда рентгенологических исследований в год
              • 8 миллионов сеансов лучевой терапии в год,
              • 11 миллионов рабочих профессионально подвергаются ионизирующему излучению в год (из которых 6,5 / 4,6 миллиона контролируются на предмет естественных / искусственных источников),
              • 11000 клинических ускорителей и 2300 60 Со источники для внешней лучевой терапии,
              • 2500 Аппараты для брахитерапии HDR / LDR ,
              • Более 200 промышленных гамма-облучателей и 1300 промышленных ускорителей электронов .

              Прямое воздействие ионизирующего излучения на медицинскую (диагностика и терапия), окружающую среду (природные и в чрезвычайных ситуациях) и деятельность ядерной промышленности свидетельствует о необходимости всемирной согласованной системы величин и единиц для обеспечения точности и сопоставимости их измерение.

              .

              BIPM — Ионизирующее излучение

              С момента своего создания Департамент ионизирующей радиации МБМВ установил и поддерживает международные эталоны, которые используются в ключевых сличениях МБМВ измерений активности и дозиметрии для НМИ, результаты которых публикуются в KCDB в поддержку CIPM MRA. . Разработка и улучшение этих стандартов составляет основную часть нашей программы НИОКР.

              Программа работы Департамента утверждается CGPM и ежегодно сообщается CIPM. BIPM также публикует годовой отчет о своей научной работе в Metrologia .

              Текущая программа на период с 2016 по 2019 год была принята CGPM в 2014 году:

              Ionizing radiation/Chemistry building

              Ionizing radiation/Chemistry building Когда использование ионизирующего излучения в науке, медицине и промышленности впервые получило широкое распространение, стало ясно, что потребуется всемирная система для обеспечения точности измерений.В 1960 году 11-я Генеральная конференция приняла решение о создании отдела ионизирующего излучения в BIPM.

              Основными направлениями деятельности МБМВ в области ионизирующего излучения является поддержание международных эталонных стандартов дозиметрии и измерения активности. Эти стандарты используются в ключевых сличениях BIPM, и их разработка и улучшение являются важной частью программы исследований и разработок. Результаты NMI публикуются в базе данных ключевых сличений. Департамент также проводит оценку национальных стандартов для государств-членов и участвует в международных сопоставлениях под эгидой CCRI.

              a hospital radiotherapy room

              Точные измерения эффектов ионизирующего излучения необходимы в широком диапазоне промышленных и медицинских приложений, где они имеют решающее значение при принятии решений, касающихся здоровья и безопасности человека. В области дозиметрии для лучевой терапии точность, необходимая для таких измерений, определяется необходимостью избегать ошибок, превышающих наименьший обнаруживаемый физиологический эффект.

              measurement of a radionuclide before injecting a patient

              В областях, где необходимы измерения активности, ядерная медицина, пожалуй, является наиболее строгой по требованиям к точности.Обычно это означает, что погрешность измерений в больницах не должна превышать нескольких процентов.

              Тот факт, что требуемая точность является скромной по сравнению с требуемой во многих других областях метрологии, не должен скрывать огромных трудностей, которые необходимо преодолеть для достижения такого уровня точности.


              Для получения дополнительной информации о единицах СИ в ионизирующем излучении см. Раздел 2.2 брошюры СИ.
              .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *