КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.
КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.
Верходанов И.А. 11
Литвиновская Н.Ю. 11
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.
Так откуда же берется электричество, которое поступает к нам в дом по проводам?
В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.
В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.
Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.
Цель исследования: изучение возникновения электричества.
Задачи исследования:
Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.
Понять, как устроен генератор, который вырабатывает электричество.
Рассмотреть, как устроена батарейка (переносной источник энергии).
Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.
Изготовить самодельную батарейку из соленой воды и металлических пластинок.
Содержание работы:
Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.
Электростанции
Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).
а б
в г
Рис.1 Электростанции: а – теплоэлектроцентраль (ТЭЦ), б — атомная электростанция, в – гидроэлектростанция, г – ветроэлектростанции.
Теплоэлектроцентраль (рис.1а), одна из самых распространенных станций, дает городу не только электричество, но и тепло для отопления домов зимой. Таких станций построено очень много. Как она работает? В большой печке сжигают газ, тот самый газ, на котором мы готовим еду в кухне, см. схему на рис.2. Газ нагревает котел с водой. Вода, нагреваясь, превращается в пар. Пар вращает турбину, а она в свою очередь вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. Дым от сгоревшего газа выходит в трубу, а пар охлаждаясь в градирне, превращаясь обратно в воду, возвращается в котел. Зимой эта горячая вода направляется в наши дома, для отопления квартир. Теперь мы видим, что механическая энергия вращения, превращается в электрическую энергию, в генераторе . [1, 4]
Рис.2. Схема работы ТЭЦ
Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320
Рис. 3 Схема работы АЭС
Гидроэлектростанция есть у нас в Перми (рис.1-в). В таких электростанциях используют энергию падающей воды. Для этого — строят поперек реки плотину. С ее высоты вода падает вниз и вращает турбину, а турбина вращает генератор, который вырабатывает электричество. Схема работы гидроэлектростанции показана на рис.4 [1, 4].
Рис. 4 Схема работы гидроэлектростанции
Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].
Рис. 5 Схема работы ветроэлектростанции
Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).
Рис. 6 Схема работы солнечной электростанции
Устройство генератора
Так как же устроен генератор, который вырабатывает электричество?
Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].
Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.
Рис.7 Схема устройства генератора
Но что будет, если к генератору подвести электрический ток?
Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.
Рис.8 Схема устройства двигателя
Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.
Батарейки
Батарейка
Рис.9 Устройство батарейки
В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].
Самую простую батарейку можно изготовить дома [2]. Для этого необходимо взять два разных «металла»: гвоздик и монетка — это будут электроды (рис.10), а в качестве электролита можно использовать лимон.
Рис.10 Самодельная батарейка
Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.
Еще самодельную батарейку можно изготовить из соленой воды и металлических пластинок (рис.11). Ее устройство очень простое. Имеется три баночки, наполненные простой соленой водой. В каждую из них опускаем по два электрода, изготовленных из металлических пластинок. Одна пластинка покрыта медью, а вторая — цинком.
Рис. 11 Самодельная батарейка
Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.
В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.
Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.
Рис. 12 Первый эксперимент
Во втором эксперименте я подключу к электростанции вентилятор (рис.13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.
Рис.13 Второй эксперимент
В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.
а б
Рис.14 Третий эксперимент
В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис.15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.
Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.
а б
Рис.15 Четвертый эксперимент
Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).
Выводы
В своей работе я рассмотрел, как работают: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Схема работы ТЭЦ и АЭС в целом похожи: нагревается котел с водой, вода превращается в пар. Пар вращает турбину, а турбина вращает генератор, который и вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город. В одном случае сжигают газ, а, во втором — используют тепло от ядерной реакции. В гидроэлектростанциях используют энергию падающей воды для вращения турбины, а турбина вращает генератор, который вырабатывает электричество. В ветроэлектростанциях ветер вращает лопасти вентилятора, а они уже вращают генератор.
Во всех электростанциях реализуется следующее: механическая энергия вращения превращается в электрическую энергию, в генераторе. Но есть и другие электростанции, в которых ничего не вращается, и, в них нет генератора. Это — солнечные батареи. Они изготовлены из специального материала, и, под воздействием солнца вырабатывают электрический ток.
Далее в работе я рассмотрел устройство батарейки — переносного источника энергии. И как можно самую простую батарейку изготовить дома.
В практической части я провел несколько экспериментов. В первом эксперименте подключил игрушечный домик к «маленькой электростанции». «Маленький» генератор вырабатывает ток, которого достаточно для включения в доме электричества. Во втором — подключил к электростанции вентилятор. Механическая энергия вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения. В третьем эксперименте я подключил к батарейкам, по очереди, все тот же домик и вентилятор. В четвертом эксперименте я продемонстрировал самодельную батарейку. В каждую из трех баночек с соленой водой опустил по два электрода, изготовленные из металлических пластинок из меди и цинка.
В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.
Но, у меня остались вопросы, на которые мне предстоит найти ответы:
Как протекает ядерная реакция? Какие АЭС есть у нас в стране? А еще мне интересно почему произошла авария в Чернобыле.
О, сколько нам открытий чудных
Готовит просвещенья дух,
И опыт – сын ошибок трудных,
И гений, парадоксов друг.
А.С. Пушкин
Список литературы
1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.
2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.
3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.
4 Получение и использование электрической энергии: [электронный ресурс] // Мир знаний. URL: http://mirznanii.com/info/id-9244
Просмотров работы: 7163
Я понимаю, как вырабатывается электричество. Но откуда берется электричество? Что такое ток, его природа?
Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до «фундаментальной» кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.
На самый поверхностный взгляд природа тока кажется простой: ток — это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.
В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:
- В металлах есть свободные электроны;
- В металлических и керамических сверхпроводниках — тоже электроны;
- В жидкостях — ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
- В газах — снова ионы, а также электроны;
- А вот в полупроводниках электроны несвободны и могут двигаться «эстафетно». Т.е. двигаться может не электрон, а как бы место, где его нет — «дырка». Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.
У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.
Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси «Пора по пиву»: «…если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ…» 🙂
И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно 🙂 вроде бы неделимые) несущие заряд — это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон — есть и поле) объясняет массу ряда частиц, а масса — это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд — это в чём-то родственные вопросы.
Многое известно о природе электрического тока, но самое главное пока нет.
Что такое электричество и как оно возникает ⋆ diodov.net
Электроника – это замечательная прикладная и теоретическая наука, которая с каждым днем набирает обороты, распространяется и внедряется во все отрасли. Изучение ее следует начинать с самых общих понятий и физических процессов. Знание которых, в дальнейшем упростит понимание принципов работы различных электронных приборов и устройств. И первое понятие, которое нам нужно усвоить – это, что такое электричество?
Открытие электричества
Впервые свойства электричества были обнаружены более 2,5 тысяч лет назад древним философом Фалесом Милетским, когда он протирал шерстью янтарь.
Внимательный философ заметил, что к уже натертому драгоценному камню притягиваются мелкие предметы. Хотя по логике, сформированной на уровне знаний того времени, все предметы должны были притягиваться к земле, т.е. падать на землю под действием сил притяжения. Однако натертый шерстью янтарь приобретал некоторое загадочное свойство, впоследствии названое зарядом, который создавал силу по величине превосходящую силу земного притяжения. И эта сила получила название «электричество». Так как слово «электрон» с греческого переводится «янтарь», то электричество дословно можно перевести янтаричество.
В те давние времена считалось, что только янтарь обладает неким загадочным свойством, способным после натирания шерстью притягивать легкие предметы, преодолевая силу земного притяжения. Однако сейчас подобный опыт довольно просто повторить, если вместо этого камня взять пластмассовую палочку и потереть ее об одежду, содержащую в своем составе шерсть. Затем, при поднесении натертой палочки к мелким кусочкам бумаги под действием электрических сил кусочки бумаги притянутся к палочке.
Из выше сказанного давайте выделим два важнейших момента:
- Только после натирания о шерсть пластмассовая палочка приобретает некие свойства.
- Приобретенные свойства порождают некую силу, под действие которой к палочке притягиваются кусочки бумаги.
Теперь мы четко знаем, на какие вопросы на нужно найти ответ, чтобы понять, что такое электричество.
Давайте рассмотрим физику происходящего процесса. И первым делом, чтобы анализировать, что происходит с веществом (в данном случае с пластмассой и шерстью) нам понадобятся знания о строении любого вещества. Заранее скажем, что в дальнейшем рассказе будем принимать обобщения и упрощения, однако они не исказят суть данной темы.
Строение атома
И так, начнем. Любое вещество, будь то дерево, камень, стекло или вода, состоит из более мелких элементов, которые называются молекулами. Например, капля воды состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.
Одно время считалось, что атом является наименьшей частичкой, существующей в природе и на более мелкие элементы разделить его уже невозможно. Поэтому слово «атом» переводится з древнегреческого «неделимый».
Сейчас известны всего лишь более ста различных атомов, однако они могут образовать миллионы разных молекул и соответственно столько же разных веществ. Например, молекулу воды H2O образуют два атома водорода H и один кислорода O.
Со временем, проделав множество кропотливых опытов, ученые пришли к выводу о существовании еще гораздо меньших частичек.
Планетарная модель атома
Центральный и наиболее тяжелым элементом атома считается ядро. Вокруг него на некотором расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.
Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон не проявляет свойств ни тех, ни других зарядов, т.е. он нейтрален, отсюда и получил свое название.
Для упрощения некоторых процессов применяется планетарная модель атома. По аналогии с Солнцем, вокруг которого по орбитам движутся планеты, в атоме вокруг ядра движутся электроны. Но электрон – это не какая-то плотная частичка, а размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.
Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях (по умолчанию) атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.
В периодической системе химических элементов, известной нам, как таблица Менделеева, все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны. Нейтроны также имею массу, но о них мы говорить не будем, поскольку они не обладают выраженным электрическим зарядом.
Наиболее легким химическим элементом является водород, поэтому он первый размещен в таблице Менделеева. Атом водород имеет один протон и один электрон. Другие химические элементы содержат несколько протонов в ядре. А вокруг ядра по нескольким орбитам перемещаются электроны. Чем ближе электрон находится к ядру, тем сильнее, с большей силой он притянут к протону. Электроны, расположенные на наиболее отдаленных орбитах, имеют самую слабую электрическую связь с протонами. И если атому придать некоторой энергии из вне, например нагреть его, то под действием избыточной энергии электрон может покинуть свою орбиту, и соответственно свой атом.
Однако он может не только покинуть совой атом, но и занять место на орбите другого атома. Именно те электроны, которые расположены на самых удаленных от ядра орбитах, в электронике имеют практическое применение, поскольку при наличии дополнительной энергии они легко покидают свои орбиты и становятся свободными. А свободный электрон при перемещении уже может выполнять некоторую полезную работу.
Положительный и отрицательный ионы
Как мы уже ранее заметили, по умолчанию атом электрически нейтрален: положительный и отрицательный заряды равны и компенсируют другу друга. Но как только хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов преобладает отрицательный заряд всех оставшихся электронов, поэтому такой атом вцелом имеет свойства положительного заряда и называется положительный ион.
Если атом получил дополнительный электрон, то в нем будет преобладать отрицательный заряд. В этом случае атом называется отрицательный ион.
Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.
Электризация
Процесс получения дополнительного электрона или, наоборот потеря электрона, называется электризация. Если какое-либо тело имеет избыток или нехватку электронов, т.е. явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.
Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.
Теперь настало время вернуться к нашему опыту с натиранием шерстью пластмассовой палочки. При натирании пластмассы за счет сил трения, электронам, находящимся в атомах шерсти сообщается некоторая энергия, под действие которой они покидают свои атомы и занимают место на орбитах атомов пластмассы. В результате этого пластмассовая палочка приобретает отрицательный заряд за счет избытка электронов, поступивших из шерсти.
При натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.
Таким образом, изменение количества электронов в верхних слоях рассматриваемых материалов во время их трения, называют электризация трением.
Здесь следует заметить, что вследствие трения лишь очень мизерная часть атомов отдает свои электроны. Даже если сказать, что одна миллиардная часть атомов остается без электронов на внешней орбите, то это все еще будет слишком большим преувеличением, поэтому массы наэлектризованных тел остаются практически неизменными.
Также нужно заметить, что в результате электризации электроны ни откуда не возникают и никуда не деваются, а лишь переходят с атомов одного тела к атомам другого тела.
В нашем опыте мы использовали стекло, пластмассу, шерсть, шелк. По этим материалам очень плохо перемещаются электроны, поэтому они относятся к хорошим диэлектрикам – материалам, которые в отличие от проводников, имеют очень плохую проводимость.
В диэлектриках заряд остается на месте его возникновения и не может перейти по поверхности через все тело на другие, соприкасающиеся с ним предметы. Поэтому, когда мы натираем шерстью пластмассовую палочку, то образовавшиеся свободные заряды остаются на своих местах: электроны, покинув шерсть находят новые места на поверхности пластмассовой палочки.
Электризация металла
Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.
Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей не получится одновременно по всей поверхности отделить оба металлические предмета, и в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.
Статическое электричество
И так, с первым пунктом мы разобрались и теперь знаем, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию и покидают атомы одного тело, которое становится положительно заряженным и занимают места на орбитах атомов другого вещества, которое приобретает свойства отрицательного заряда. При этом заряды одного знака отталкиваются друг от друга, а разных знаков – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.
В рассмотренных примерах получают так называемое статическое электричество.
Электрическая сила
Теперь рассмотрим второй пункт нашего опыта. Что же происходит с кусочком бумаги? Почему она притягивается к заряженной пластмассовой палочке?
Сущность физического процесса здесь заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным, а противоположный край соответственно положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.
Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага, той поверхностью, на которой скопились отрицательные заряды. И наоборот.
Такое воздействие заряженным телом на другие тела, находящиеся на расстоянии, называют индуцированным воздействием.
Перемещение зарядов в проводниках при воздействии на него заряженным телом, происходит под воздействием силы электрического поля, свойства которого мы рассмотрим отдельно.
Здесь же мы еще заметим, что сила, с которой притягиваются либо отталкиваются тела, определяется величиной заряда, расстоянием между телами и средой, в которой находятся заряженные тела. Эта зависимость была установлена известным ученым Кулоном, и получила название закон Кулона.
Подытожим выше сказанное. Что такое электричество? Электричество – это наличие и взаимодействие зарядов разного знака. В дальнейшем вы увидим, что заряды образуются не только путем электризации трением, но и другими способами, например под действием протекания химических реакций. Именно так появляются электричество в батарейке, которую правильно называть гальванический элемент.
Еще статьи по данной теме
Как получить атмосферное электричество для дома своими руками — схема и видео
Что такое атмосферное электричество
Первым всерьез занялся проблемой гениальный Никола Тесла. Источником появления свободной электрической энергии Тесла считал энергию Солнца. Созданный им прибор получал электроэнергию из воздуха и земли. Тесла планировал разработку способа передачи полученной энергии на большие расстояния. Патент на изобретение описывал предложенный прибор, как использующий энергию излучения.
Устройство Теслы было революционным для своего времени, но объем получаемой им электроэнергии был небольшим, и рассматривать атмосферное электричество как альтернативный источник энергии, было неверно. Совсем недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в больших объемах. Его тороидальный генератор может подавать электричество для ламп накаливания и более сложных бытовых приборов. Он работает длительное время, не требуя внешней подпитки. Работа этого прибора основана на резонансных частотах, магнитных вихрях и токовых ударах в металле.
На фото рабочий образец тороидального генератора Стивена Марка
Как получить электричество из воздуха в домашних условиях
Опыты Николы Тесла показали, что получать электричество из воздуха своими руками можно без особого труда. В наше время, когда атмосфера пронизана различными энергетическими полями, эта задача упростилась. Все, что производит излучения (теле- и радиовышки, ЛЭП и т. п.) создает энергетические поля.
Принцип получения электричества из воздуха очень прост: над землей поднимается пластина из металла, которая играет роль антенны. Между землей и пластиной возникает статическое электричество, которое, со временем накапливается. Через определенные временные интервалы происходят электрические разряды. Таким образом генерируется, а затем используется атмосферное электричество.
Схема получения атмосферного электричества своими руками
Такая схема достаточно проста ‑ для генерации потребуется только металлическая антенна и земля. Потенциал, который устанавливается между проводниками, со временем накапливается, хотя рассчитать его силу невозможно. При достижении определенного максимального значения потенциала происходит разряд тока, подобный молнии.
Достоинства
- Простота. Принцип легко можно апробировать дома;
- Доступность. Не нужны никакие приборы и сложные приспособления – достаточно токопроводящей пластинки.
Недостатки
- Невозможность просчитать силу тока, что может быть опасно;
- К образованному при работе открытому контуру заземления притягиваются молнии. Удар молнии может достигать напряжения 2000 вольт, а это очень опасно. Именно поэтому способ не получил широкого распространения.
Где уже используют атмосферное электричество
Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.
Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.
В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.
На фото готовый к работе генератор Капанадзе
Выводы
Новые способы получения дешевой энергии у многих ученых вызывают опасения из-за вмешательства в процессы атмосферы и ионосферы. Их влияние на возникновение и течение жизни на Земле изучено слабо, поэтому воздействие может пагубно отразиться на состоянии планеты.
Но лично я считаю, что технология атмосферного элекричества тормозится умышленно. Более того, существует факт масштабного использования электричества из воздуха до 1917 года. На видео ниже вы сами можете убедиться в существовании электроэнергии даже в 17 веке.
Кто изобрел электричество первым в мире и когда оно появилось, в каком году
Электричество – обыденное и жизненно необходимое для большинства людей явление. И как любая привычная вещь, оно редко заметно. Мало кто задаётся вопросом откуда оно появляется, как работает, что с его помощью можно сделать. Однако, его исследованием занимались задолго до нашей эры и до сих пор некоторые загадки остаются без ответа.
Что понимают под электрическим током
Электричество – это комплекс явлений, связанный с существованием электрических зарядов. Под этим словом чаще всего подразумевается электрический ток и все процессы, которые он вызывает.
Электрический ток – это направленное движение частиц, несущих заряд, под воздействием электрического поля.
Кто придумал электричество — история
Частные проявления электричества изучались ещё задолго до нашей эры. Но соединить их в одну теорию, объясняющую вспышки молний в небе, притяжение предметов, способность вызывать пожары и онемение частей тела или даже смерть человека, оказалось непростой задачей.
Учёные издревле изучали три проявления электричества:
В Древнем Египте целители знали о странных способностях нильского сома и пытались с его помощью лечить головную боль и другие заболевания. Древнеримские врачи использовали в сходных целях электрического ската. Древние греки подробно изучали странные способности ската и знали, что оглушить человека существо могло без прямого контакта через трезубец и рыболовные сети.
Несколько раньше было обнаружено, что если потереть янтарь о кусок шерсти, то он начнёт притягивать шерстинки и небольшие предметы. Позже был открыт и другой материал со сходными свойствами – турмалин.
Примерно в 500-х годах до н.э. индийские и арабские учёные знали о веществах, способных притягивать железо и активно использовали эту способность в разных областях. Около 100-го года до н.э. китайские учёные изобрели магнитный компас.
В 1600 году Уильям Гилберт, придворный врач Елизаветы I и Якова I, обнаружил, что вся планета – это один огромный компас и ввел понятие «электричество» (с греческого «янтарность»). В его трудах эксперименты с натиранием янтаря о шерсть и способность компаса указывать на север начали объединяться в одну теорию. На картине ниже он демонстрирует магнит Елизавете I.
В 1633 год инженер Отто фон Герике изобретает электростатическую машину, которая может не только притягивать, но и отталкивать предметы, а в 1745 году Питер ван Мушенбрук сооружает первый в мире накопитель электрического заряда.
В 1800 году итальянец Алессандро Вольта изобретает первый источник тока – электрическую батарею, вырабатывающую постоянный ток. Также он смог передать электрический ток на расстояние. Поэтому именно этот год многие считают годом изобретения электричества.
В 1831 году Майк Фарадей открывает явление электромагнитной индукции и открывает направление для изобретения различных устройств на основе электрического тока.
На рубеже XIX-XX веков совершается огромное количество открытий и достижений, благодаря деятельности Николы Тесла. Среди прочего, он изобрёл высокочастотный генератор и трансформатор, электродвигатель, антенну для радиосигналов.
Наука, изучающая электричество
Электричество – природное явление. Оно частично изучается в биологии, химии и физике. Наиболее полно электрические заряды рассматриваются в рамках электродинамики – одного из разделов физики.
Теории и законы электричества
Законов, которым подчиняется электричество немного, но они полностью описывают явление:
- Закон сохранения энергии – фундаментальный закон, которому подчиняются и электрические явления;
- Закон Ома – основной закон электрического тока;
- Закон электромагнитной индукции – о электромагнитном и магнитном полях;
- Закон Ампера – о взаимодействии двух проводников с токами;
- Закон Джоуля-Ленца – о тепловом эффекте электричества;
- Закон Кулон – об электростатике;
- Правила правой и левой руки – определяющие направления силовых линий магнитного поля и силы Ампера, действующей на проводник в магнитном поле;
- Правило Ленца – определяющее направление индукционного тока;
- Законы Фарадея – об электролизе.
Первые опыты с электричеством
Первые опыты с электричеством носили, в основном, развлекательный характер. Их суть была в лёгких предметах, которые притягивались и отталкивались под действием плохо изученной силы. Другой занимательный опыт – передача электричества через цепочку людей, взявшихся за руки. Физиологическое действие электричества активно изучал Жан Нолле, заставивший пройти электрический заряд через 180 человек.
Из чего состоит электрический ток
Электрический ток – это направленное или упорядоченное движение заряженных частиц (электронов, ионов). Такие частицы называют носителями электрического заряда. Для того чтобы движение появилось, в веществе должны быть свободные заряженные частицы. Способность заряженных частиц перемещаться в веществе определяет проводимость этого вещества. По проводимости вещества различают на проводники, полупроводники, диэлектрики и изоляторы.
В металлах заряд перемещают электроны. Само вещество при этом никуда не утекает – ионы металла надёжно закреплены в узлах структуры и лишь слегка колеблются.
В жидкостях заряд переносят ионы: положительно заряженные катионы и отрицательно заряженные анионы. Частицы устремляются к электродам с противоположным зарядом, где становятся нейтральными и оседают.
В газах под действием сил с разными потенциалами образуется плазма. Заряд переносится свободными электронами и ионами обоих полюсов.
В полупроводниках, заряд перемещают электроны, перемещаясь от атома к атому и оставляя после себя разрывы, считающиеся положительно заряженными.
Откуда берется электрический ток
Электричество, поступающее по проводам в дома, вырабатывается электрическим генератором на различных электростанциях. На них генератор соединён с постоянно вращающейся турбиной.
В конструкции генератора есть ротор – катушка, которая располагается между полюсами магнита. При вращении турбиной этого ротора в магнитном поле по законам физики появляется или наводится электрический ток. Таким образом назначение генератора – преобразовывать кинетическую силу вращения в электричество.
Заставить турбину крутиться можно многими способами, используя разнообразные источники энергии. Они разделяются на три вида:
- Возобновляемые – энергия, получаемая из неисчерпаемых ресурсов: потоков воды, солнечного света, ветра, геотермальных источников и биотоплива;
- Невозобновляемые – энергия, получаемая из ресурсов, которые возникают очень медленно, несоизмеримо с темпами расходования: уголь, нефть, торф, природный газ;
- Ядерные – энергия, получаемая из процесса ядерного деления клеток.
Чаще всего электроэнергия возникает благодаря работе:
- Гидроэлектростанций (ГЭС) – строятся на реках и используют силу водного потока;
- Тепловых электростанций (ТЭС) – работают на тепловой энергии от сжигания топлива;
- Атомные электростанции (АЭС) – работают на тепловой энергии, получаемой от процесса ядерной реакции.
Преобразованная энергия по проводам поступает в трансформаторные подстанции и распределительные устройства и уже потом доходит до конечного потребителя.
Сейчас активно развиваются так называемые альтернативные виды энергии. К ним относят ветрогенераторы, солнечные батареи, использование геотермальных источников и любые другие способы получить электроэнергию через необычные явления. Альтернативная энергетика сильно уступает по производительности и окупаемости традиционным источникам, но в определённых ситуациях помогают сэкономить и снизить нагрузку на основные электросети.
Также есть миф о существовании БТГ — бестопливных генераторов. В интернете есть ролики демонстрирующие их работу и предлагается их продажа. Но о достоверности этой информации идут большие споры.
Виды электричества в природе
Самый простой пример электричества, возникающего естественным путём – это молнии. Частицы воды в облаках постоянно сталкиваются друг с другом, приобретая положительный или отрицательный заряд. Более лёгкие, положительно заряженные частицы оказываются в верхней части облака, а тяжёлые отрицательные перемещаются вниз. Когда два подобных облака оказываются на достаточно близком расстоянии, но на разной высоте, положительные заряды одного начинают взаимно притягиваться отрицательными частицами другого. В этот момент и возникает молния. Также это явление возникает между облаками и самой земной поверхностью.
Другое проявление электричества в природе – это специальные органы у рыб, скатов и угрей. С их помощью они могут создавать электрические заряды, чтобы обороняться от хищников или оглушать своих жертв. Их потенциал – от совсем слабых разрядов, незаметных для человека, до смертельно опасных. Некоторые рыбы создают вокруг себя слабое электрическое поле, помогающее искать добычу и ориентироваться в мутной воде. Любой физический объект так или иначе искажает его, что помогает воссоздавать окружающее пространство и «видеть» без глаз.
Также электричество проявляется и в работе нервной системы живых организмов. Нервный импульс передаёт информацию от одной клетки к другой, позволяя реагировать на внешние и внутренние раздражители, мыслить и управлять своими движениями.
Как получить бесплатное электричество – лучшие способы
Бесплатное электричество — это реально
Содержание статьи
Многие люди хотели бы получать бесплатное электричество, однако бесплатным бывает только сыр в мышеловке. На самом деле, есть несколько способов получения бесплатной электроэнергии, для питания, например, светодиодного освещения, а также других, маломощных электропотребителей.В данной статье строительного журнала samastroyka.ru будет рассказано о том, как и из чего, можно получить бесплатную электроэнергию, так сказать, не выходя из квартиры.
Как получить бесплатное электричество
Способ 1 — получение электроэнергии за счет перекоса фаз. Данный способ получения бесплатного электричества, основан на так называемом «перекосе фаз». Очень часто напряжение здесь может быть до 20 Вольт, которых хватит для того, чтобы зажечь декоративную подсветку или небольшие светодиодные лампы.
Данный способ получения бесплатной электроэнергии подойдёт в том случае, если в доме есть модульное заземление или громоотвод. Напряжение снимается с заземления и с рабочего нуля в розетке. При этом очень важно знать, где именно находится ноль, а где фаза. Как найти фазу и ноль без приборов, читайте на сайте строительного журнала.
Также, чтобы электричество было действительно бесплатное, а не учитывалось, нужно чтобы в доме был установлен дисковый электросчетчик. Новые приборы учёта электричества умеют определять «землю» и «реверс», поэтому с ними ничего не получится сделать. Можно попробовать взять ноль до счетчика, например, с ящика в котором он установлен.
Способ 2 — использования водяных генераторов. Такие генераторы вырабатывают электроэнергию за счет воды, которая через них будет проходить. Например, можно установить водяной генератор в квартире с централизованным отоплением или водопроводом. При этом в системе отопления водяной генератор нужно устанавливать, только перед радиатором, чтобы он не мешал нормальному функционированию отопительной системы.
Водяной генератор стоит относительно недорого, а заказать и купить его можно, например, на Алиэкспресс. Получится установить его и в водопроводную трубу перед смесителем. Как и в первом случае, бесплатное электричество будет вырабатываться за счет напора воды.
Получение электричества из воздуха
Способ 3 — использование энергии воздуха. На самом деле, бесплатную электроэнергию из воздуха получают уже сравнительно давно. Однако можно попробовать это сделать прямо в квартире, если позволяет вентиляция.
В данном случае в ней должна быть достаточно большая тяга, чтобы под воздействием энергии воздуха приводился в движение ветрогенератор. Данной электроэнергии вполне хватит для подключения небольших источников светодиодного освещения.
Теперь вы знаете, из чего и как можно получить бесплатное электричество в квартире. Если какие-то из способов не были учтены в данной статье строительного журнала, просьба поделиться ими в комментариях.
Оценить статью и поделиться ссылкой:«Что такое электричество?» – Яндекс.Кью
Включаешь прибор в розетку — он работает. От электричества. Но почему? Смотри.
Все началось в древности, когда люди узнали об электрических зарядах. Какой-нибудь древний грек случайно взял янтарную палочку и потёр ею о шерстяную тряпочку. Возникли искры. Вот это и есть электрические заряды. Кстати, янтарь по-гречески — «электрон». Но откуда в янтаре или шерсти электричество? Потому что все вокруг состоит из атомов (это, кстати, тоже греческое слово) — это как мелкие кубики Лего, из которых построено все в мире, включая тебя самого.
В атомах есть такие мелкие частицы, которые называются электроны. Их назвали так в честь янтаря, как ты теперь понимаешь. Когда ты трёшь янтарь о шерсть или, например, пластиковую расческу о свои волосы, ты выбиваешь электроны из атомов. Они вылетают из своих привычных мест в атоме и создают те самые искры.
Потом выяснилось, что заряд бывает двух видов: отрицательный и положительный. Это просто для удобства их так назвали. Это не значит, что один из них плохой, а другой хороший. Так вот, разные заряды притягиваются друг к другу, а одинаковые — отталкиваются. Именно поэтому волосы липнут к расческе, если ею сначала хорошенько потереть их. Потому что у расчески заряд отрицательный, а у волос — положительный. Они притягиваются.
А потом люди поняли, что заряды могут не только забавные искры создавать и волосы прилеплять к расческе. Оказалось, что заряды могут двигаться. Только не просто так, а по металлическим проводам. Если в одной части провода будет положительный заряд, а в другой — отрицательный, то в проводе побежит электрический ток. От одного конца провода к другому. Примерно так же вода в ручье течет из более высокого места в более низкое.
Так что же такое электричество? Это и есть электрический ток в проводах. Заряженные электроны бегут по проводу, попадают в какой-то прибор — телевизор или пылесос — и выполняют там какую-то полезную работу. Например, заставляют мотор пылесоса крутиться, а экран телевизора показывать мультики.
Как производится электричество — Управление энергетической информации США (EIA)
Как вырабатывается электроэнергия
В 1831 году ученый Майкл Фарадей обнаружил, что когда магнит перемещается внутри катушки с проволокой, в ней течет электрический ток. Генератор электричества — это устройство, преобразующее форму энергии в электричество. Генераторы работают благодаря взаимосвязи между магнетизмом и электричеством. Генераторы, преобразующие кинетическую (механическую) энергию в электрическую, производят почти всю электроэнергию, которую используют потребители.
Обычный метод производства электричества — это генератор с электромагнитом — магнит, производимый электричеством, а не традиционный магнит. Генератор имеет серию изолированных витков провода, образующих неподвижный цилиндр. Этот цилиндр окружает вращающийся электромагнитный вал. Когда электромагнитный вал вращается, он индуцирует небольшой электрический ток в каждой секции катушки с проволокой. Каждая секция проволочной катушки становится небольшим отдельным электрическим проводником.Небольшие токи отдельных секций объединяются в один большой ток. Этот ток представляет собой электричество, которое перемещается по линиям электропередач от генераторов к потребителям.
Электрогенератор
Источник: по материалам Energy for Keeps (общественное достояние)
Большая часть электроэнергии в США вырабатывается электростанциями, которые используют турбину или аналогичную машину для привода генераторов электроэнергии.
Турбина преобразует потенциальную и кинетическую энергию движущейся жидкости (жидкости или газа) в механическую энергию. В турбогенераторе движущаяся жидкость, такая как вода, пар, газообразные продукты сгорания или воздух, толкает ряд лопастей, установленных на валу, который вращает вал, соединенный с генератором. Генератор, в свою очередь, преобразует механическую энергию в электрическую на основе взаимосвязи между магнетизмом и электричеством.
Различные типы турбин включают паровые турбины, турбины внутреннего сгорания (газовые), водяные (гидроэлектрические) турбины и ветряные турбины.В паровых турбинах горячая вода и пар производятся путем сжигания топлива в котле или использования теплообменника для улавливания тепла от жидкости, нагретой, например, солнечной или геотермальной энергией. Пар приводит в движение турбину, которая приводит в действие генератор. Топливо или источники энергии, используемые для паровых турбин, включают биомассу, уголь, геотермальную энергию, нефтяное топливо, природный газ, ядерную энергию и солнечную тепловую энергию. Большинство крупнейших электростанций США имеют паровые турбины.
Газовые турбины внутреннего сгорания, аналогичные реактивным двигателям, сжигают газообразное или жидкое топливо для получения горячих газов для вращения лопаток турбины.
Двигатели внутреннего сгорания, такие как дизельные двигатели, также используются для производства механической энергии для работы генераторов электроэнергии. Дизель-генераторы используются во многих отдаленных деревнях на Аляске и широко используются для электроснабжения на строительных площадках, а также для аварийного или резервного электроснабжения зданий и электростанций. Дизель-генераторы могут использовать различные виды топлива, включая нефтяное дизельное топливо, биодизель, природный газ, биогаз и пропан. Небольшие генераторы с двигателями внутреннего сгорания, работающие на бензине, природном газе или пропане, обычно используются строительными бригадами и торговцами, а также для аварийного электроснабжения домов.
ТЭЦ, иногда называемые когенераторами , используют тепло, которое не преобразуется напрямую в электричество в паровой турбине, турбине внутреннего сгорания или генераторе с двигателем внутреннего сгорания, для других целей, например для космоса. отопление или промышленное тепло. Некоторые электростанции используют неиспользованное тепло или газы сгорания от одной турбины, такой как газовая турбина, для выработки большего количества электроэнергии в другой турбине, такой как паровая турбина. Эта система из двух отдельных генераторов, использующих один источник топлива, называется комбинированным циклом.ТЭЦ и электростанции комбинированного цикла — одни из наиболее эффективных способов преобразования топлива в полезную энергию.
Гидроэлектрические турбины используют воду для вращения лопастей турбин, а ветряные турбины используют ветер.
Электрогенераторы, в которых не используются турбины, включают солнечные фотоэлектрические элементы, которые преобразуют солнечный свет непосредственно в электричество, и топливные элементы, которые преобразуют топливо, такое как водород, в электричество посредством химического процесса.
- паровые турбины61%
- турбины внутреннего сгорания 24%
- гидроэлектрические турбины 7%
- ветряные турбины 7%
- солнечные фотоэлектрические системы1%
- двигатели внутреннего сгорания <1%
Последнее обновление: 5 ноября 2019 г.
,PPT — Как получить электричество PowerPoint Presentation, скачать бесплатно
Как получить электричество
Как получить электричество
Что такое электричество? Электричество — это энергия, переносимая движением электронов ** Мы не производим электричество, мы ПРЕОБРАЗУЕМ другие источники энергии в электрическую энергию ** Преобразование — это название игры
Переменный ток Крупные генераторы производят переменный ток. синусоида с n циклами в секунду 1, 2, 3 фазы? США: 120 В, 60 Гц Малайзия: 240 В, 50 Гц Способность к преобразованию Аккумуляторы постоянного тока, фотоэлектрические, топливные элементы, небольшие генераторы постоянного тока Зарядка в ОДНОМ направлении Отрицательные, положительные клеммы Простое преобразование переменного тока в постоянный, а не постоянного в переменный переменный ток
Эффект Фарадея • Основные понятия • Напряжение — V — Потенциал перемещения заряда (вольт) • Ток — I — Движение заряда (амперы или амперы) • Сопротивление — R — V = IxR (R in = Ом) • Мощность — P = IxV = I2xR (Вт) Эффект Фарадея
Электродвигатель M Электроэнергия Механическая энергия Электродвигатель постоянного тока
Электродвигатель модели Электроэнергетическая катушка Магнитное поле Что вам нужно?
Правило левой руки Флемминга (Правило двигателя) • Использование: для определения направления силы, действующей на проводник с током в магнитном поле.
Углеродный стержень НЕ является магнитным. • Когда ток не течет, стержень неподвижен. • Когда мы включаем ток, стержень испытывает силу, которая заставляет его двигаться. • Направление силы определяется правилом левой руки Флеминга.
Следующий слайд смотрит вниз по валу Основная теория BII w вал h
B Базовая теория Ток идет к вам Вал Ток уходит от you
B FFT = 2hFcos = 2hIwBNcos Направление базовой теории по правилу правой руки Большой палец = текущий Указательный палец = B Отдых = сила
B Основная теория
B Базовая теория
B Базовая теория
B Базовая теория
B Базовая теория
B Базовая теория
B Базовая теория
Двигатель постоянного тока 9 0005
Электрогенератор G Механическая энергия Электрическая энергия Стационарные магниты — вращающиеся магниты — электромагниты
Правило правой руки Флеминга (правило генератора) • Использование: для определения направления наведенной ЭДС / тока проводник, движущийся в магнитном поле.
Электромеханическое преобразование энергии Двигатель Механический Электроэнергетический Электрогенератор DEMO
Как избавиться от статического электричества
Как избавиться от статического электричества
Вы когда-нибудь пожимали кому-нибудь руку и получали в ответ удивительный «шок»? Этот небольшой удар, который вы иногда чувствуете при прикосновении к кому-то или чему-то, вызван статическим электричеством. Мы можем носить с собой статическое электричество и шокировать людей или предметы, к которым мы прикасаемся, не желая этого. Или из-за этого наши волосы торчат вверх или предметы прилипают к нашей одежде, что может расстраивать и раздражать.Итак, что вызывает статическое электричество? Читай дальше что бы узнать.
Что вызывает статическое электричество?
Давайте поговорим минутку о науке. Все материалы, будь то люди или неодушевленные предметы, состоят из молекул. Эти молекулы состоят из крошечных атомов, которые имеют положительно заряженные протоны, нейтральные нейтроны и отрицательно заряженные электроны. Когда у объекта или человека нечетное количество электронов и протонов, электроны начинают искать, куда бы им пойти. Статическое электричество возникает, когда электроны прыгают между двумя объектами, имеющими противоположные электрические заряды.Если бы вы шли по покрытому ковром полу, по пути вы бы собрали много электронов. Итак, если у вас есть отрицательный заряд, и вы пожмете руку положительно заряженному человеку, произойдет шок.
Как избавиться от статического электричества?
Вы склонны переносить много статического электричества, куда бы вы ни пошли? Попробуйте использовать сушилки для белья, когда сушите одежду. Простыни для сушки покрывают вашу одежду и постельное белье проводящей поверхностью, которая не дает электронам накапливаться. Вы также можете носить с собой несколько листов сушилки в герметичном мешочке в портфеле или сумочке, чтобы натирать их одежду или волосы в особенно засушливые дни.Или возьмите с собой небольшой распылитель с водой. Тонкое покрытие из молекул воды позволяет электронам двигаться более свободно, уменьшая статическое электричество.
Вот еще несколько простых советов, как избавиться от статического электричества:
Добавьте немного влаги в воздух
Молекулы воды уменьшают накопление статического электричества не только в ваших волосах, но и в вашем доме. Сухой воздух способствует увеличению статического электричества, поэтому добавление влаги в воздух решит эту проблему.Попробуйте использовать небольшой увлажнитель воздуха в том месте дома, где кажется сухим. Добавление комнатных растений также повысит влажность воздуха.
Обработайте ковры антистатическим спреем
Если большая часть вашего дома покрыта коврами, вероятно, у вас много статического электричества. Обратите внимание на спреи для ковров, снижающие статическое электричество. Вы также можете приготовить собственный спрей, разбавив колпачок жидкого смягчителя ткани в бутылке с распылителем, наполненной водой.
Оставайтесь увлажненными
Вы часто шокируете людей своими рукопожатиями? Виной всему могла быть сухая кожа.Попробуйте наносить на кожу увлажняющий лосьон после каждого душа и периодически в течение дня. Сухая кожа может накапливать больше электронов, чем эластичная влажная кожа, и может способствовать тому, чтобы вы были наэлектризованы.
Если все остальное не работает, используйте металл
Если все вышеперечисленные советы не помогли вам, попробуйте простое решение: носите в кармане металлический ключ или английскую булавку. Все заряды электронов будут перенесены на металлический объект, если вы коснетесь его, прежде чем коснуться чего-либо еще.Вы также можете использовать эту концепцию, взяв металлическую вешалку и осторожно потерев ею по длине своей одежды, прежде чем надеть ее утром.
У мистера Электрика есть все ответы
Помните, что когда дело доходит до электричества, статического или другого, у Mr. Electric есть все ответы. По любым вопросам, связанным с электричеством, от проверок электробезопасности до специального освещения, позвоните г-ну Electric по телефону (844) -866-1367 или запишитесь на прием онлайн сегодня.
Вы устали от ворса и мусора на окнах? В Glass Doctor есть полезные советы по созданию чистых окон без разводов и статического электричества. Как член семьи поставщиков услуг на дому Neighborly, вы можете доверять Glass Doctor в предоставлении экспертных консультаций и услуг.
,