Способы выработки электроэнергии: Традиционные и альтернативные способы получения электроэнергии

Содержание

Традиционные и альтернативные способы получения электроэнергии

В настоящее время человечество использует все возможные способы получения электроэнергии. Трудно переоценить важность этого ресурса. Причем его потребление растет с каждым днем. По этой причине все больше внимания уделяется нетрадиционным способам получения электроэнергии. В то же время эти источники на данном этапе развития не могут полностью удовлетворить потребности земного населения. В данной статье кратко рассмотрены основные традиционные и альтернативные способы получения электроэнергии.

Тепловая электростанция

­

Получение электроэнергии на тепловых электростанциях

Данный способ получения электроэнергии является самым распространенным. Так например, в Российской Федерации на долю тепловых источников приходится почти 80 % всей выработки необходимого ресурса. Идут годы, экологи уже практически кричат о негативном воздействии подобных инженерных сооружений на окружающую среду и на здоровье человека, однако станции, возведенные еще в середине прошлого века (а то и дореволюционные) продолжают снабжать населенные города и крупные промышленные предприятия электричеством.

Тепловые источники относятся к традиционным способам получения электроэнергии. И вот уже на протяжении трех или четырех десятков лет занимают лидирующую позицию в рейтинге по объемам выработки. И это несмотря на бурное развитие альтернативных способов получения электроэнергии.

Среди всех инженерных проектов выделяют особый вид сооружений. Это теплоэлектроцентрали, дополнительная функция которых снабжать дома и квартиры граждан теплом. По подсчетам специалистов, эффективность таких электростанций крайне низкая, а передача вырабатываемого ресурса на дальние расстояния сопряжена с большими потерями.

Выработка энергии осуществляется следующим образом. Твердое, жидкое или газообразное топливо сжигается, разогревая воду в котле до значительных температур. Сила пара приводит во вращение лопасти турбины, в результате чего ротор турбогенератора вращается и происходит выработка электроэнергии.

Самая мощная гидроэлектростанция в России

Гидроэлектростанции – перспективный способ получения электроэнергии

Строительство сложных инженерных сооружений, предназначенных для преобразования энергии воды в электричество, было начато еще в Российской Империи. С тех пор прошло много лет, а данный источник по-прежнему активно используется. В годы индустриализации СССР (1930-е) по всей стране выросли гидроэлектростанции-гиганты. На строительство этих исполинов (чего стоит только одна Запорожская ГЭС!) были брошены все силы молодой и неокрепшей страны. Инженерные сооружения тех лет по-прежнему эксплуатируются и вырабатывают значительное количество электроэнергии.

В настоящее время государство делает ставку на развитие «зеленых» способов получения электроэнергии. Поэтому активно финансируется возведение современных и очень продуктивных гидроэлектростанций по всей стране. Стратегия строительства некрупных объектов на небольших притоках рек полностью оправдала себя. Одна такая станция может вполне удовлетворить потребности в электроэнергии небольших прилежащих населенных пунктах. В масштабах всей страны это приведет к повышению эффективности народного хозяйства и конкурентоспособности отечественных производителей промышленных товаров.

К недостаткам данной технологии можно отнести большую стоимость таких объектов и очень длительные сроки их окупаемости. Основные затраты приходятся на строительство плотины. А ведь необходимо возвести само здание (административный и машинный корпуса), построить приспособление для сброса воды и так далее. Параметры и состав сооружения зависят от многих факторов: установленной мощности генераторов и напора воды, типа электростанции (плотинная, русловая, деривационная, аккумулирующая, приливная). Гидроэлектростанции на крупных судоходных реках имеют также сложные судоходные шлюзы и каналы для обеспечения миграции рыб к месту нерестилищ.

Градирни атомной электростанции

Атомная энергетика

Атомной электростанцией сегодня уже никого не удивить. Такие объекты активно стали возводиться еще в СССР. Поэтому эта технология относится к традиционным способам получения электроэнергии.

Атомные станции и в настоящее время активно возводятся не только в России, но и в странах ближнего и дальнего зарубежья. Так, например, компания с русскими корнями «Росатом» финансирует строительство такого источника в Республике Беларусь. К слову, на данной территории эта станция будет первой.

В мире отношение к атомной энергетике весьма неоднозначно. Германия, например, всерьез вздумала полностью отказаться от мирного атома. И это в то время, когда Российская федерация активно инвестирует строительство новых объектов последнего поколения.

Ученые достоверно установили, что залежей ядерного топлива в недрах земли гораздо больше всех запасов углеводородного сырья (нефти и газа). Постоянно нарастающая потребность в углеводородах ведет их удорожание. Именно по этому развитие ядерной энергетики оправдывает себя.

Ветровая электростанция

Энергия ветра

Ветровая электроэнергетика в промышленных масштабах возникла относительно недавно и пополнила перечень нетрадиционных способов получения электроэнергии. И это очень перспективная технология. С большой долей вероятности можно утверждать, что в отдаленном будущем ветряки будут вырабатывать столько электроэнергии, сколько необходимо человечеству. И это не пустые слова, ведь по самым скромным оценкам ученых, суммарная сила ветра на поверхности земного шара минимум в сто раз превышает мощность всех водных ресурсов.

Основной проблемой является непостоянство потоков воздуха, что влечет за собой сложности в прогнозировании выработки энергии. На огромной по площади территории России постоянно дуют ветры. И если научиться эффективно и результативно пользоваться этим неисчерпаемым ресурсом, то можно с лихвой удовлетворить все потребности тяжелой промышленности и населения страны.

Несмотря на очевидные плюсы от использования энергии ветра, объем выработки электричества ветровыми электростанциями не превышает и одного процента в общем объеме. Оборудование для этих целей стоит очень дорого, кроме того, такие объекты будут эффективны далеко не в каждом районе, а транспортировка электроэнергии на значительные расстояния сопряжена с большими потерями.

Геотермальная электростанция

Геотермальная энергетика

Освоение геотермальных источников ознаменовало новую веху в истории развития альтернативных способов получения электроэнергии.

Принцип выработки электроэнергии заключается в поступлении кинетической и потенциальной энергии пара горячей воды подземного источника в лопасти турбины генератора, которая посредством вращательных движений производит ток. В теории разница температур на поверхности и в глубине земной коры характерна для любого участка. Однако она, как правило, минимальна, и использовать ее в целях получения электроэнергии не представляется возможным. Возведение таких станций оправдано лишь в определенных районах нашей планеты (сейсмически активных). Первопроходцем в освоении этого способа является Исландия. Земли русской Камчатки также могут использоваться в этих целях.

Принцип получения энергии заключается в следующем. Горячая вода из недр земли поступает на поверхность. Давление здесь значительно ниже, что приводит к закипанию воды. Отделяющийся пар направляется по трубопроводу и вращает лопасти турбин генератора. Трудно дать прогноз на будущее по этому современному способу получения электроэнергии. Возможно такие станции начнут массово строиться на территории Российской Федерации, а возможно эта идея со временем затухнет и о ней никто и не вспомнит.

Освоение тепловой энергии океана

Мировой океан поражает воображение своими масштабами. Специалисты не могут дать даже приблизительную оценку величине аккумулируемой в нем тепловой энергии. Понятно лишь одно – колоссальный объем ресурсов остается незадействованным. В настоящее время уже построены прототипы электростанций, которые преобразовывают энергию тепла вод океана в ток. Однако это опытные проекты, и нет никакой уверенности, что это направление энергетики получит дальнейшее развитие.

Приливная электростанция

Приливы и отливы на службе электроэнергетики

Преобразование мощной силы отливов и приливов в ценные производные является новым способом получении электроэнергии. Природа этих явлений в настоящее время известна и не вызывает того благоговейного трепета, который возникал у наших предков. Виной всему – воздействие магнитного поля верного спутника планеты – Луны.

Наиболее заметными приливные и отливные течения вод наблюдаются на мелководьях морей и океанов, а также в руслах рек.

Первая станция, действительно давшая результат, была возведена в далеком 1913 году в Великобритании неподалеку от Ливерпуля. С тех пор многие страны пытались повторить опыт, но в итоге отказывались от этой затеи по разным причинам.

солнечная электростанция

Солнечная энергия

По сути дела, все природные топливные ископаемые были образованы миллионы лет назад с участием и под воздействием солнечных лучей. Таким образом, можно сказать, что человечество давно и активно пользуется продуктами, получаемыми от солнца. Собственно говоря, и наличием рек и озер мы обязаны этому неиссякаемому источнику, который обеспечивает кругооборот воды. Однако под современной солнечной энергетикой понимается не это. Относительно недавно ученые смогли разработать и произвести специальные батареи. Они вырабатывают электричество при попадании на их поверхность солнечных лучей. Данная технология относится к альтернативному способу получения электроэнергии.

Солнце, пожалуй, является самым мощным источником из всех ныне известных. За три дня планета Земля получает столько энергии, сколько не содержится во всех разведанных и потенциальных месторождениях всех видов тепловых ресурсов. Однако поверхности земной коры достигает лишь 1/3 этой энергии, а большая часть рассеивается в атмосфере. И все же речь идет о колоссальных объемах. По подсчетам специалистов, один небольшой водоем получает столько энергии, сколько вырабатывает довольно крупная тепловая электростанция.

В мире имеются установки, которые используют энергию солнечных лучей для получения пара. Он приводит во вращение генератор и вырабатывается электричество. Однако подобные установки являются большой редкостью.

Независимо от того, по какому принципу вырабатывается электроэнергия, установка должна оснащаться коллектором – устройством для концентрации солнечных лучей. Наверняка многие видели собственными глазами солнечные батареи. Создается впечатление, что они находятся под темным стеклом. Оказывается, подобное покрытие и являет собой простейший коллектор. Принцип его работы основывается на том, что темный прозрачный материал пропускает солнечные лучи, но задерживает и отражает инфракрасное и ультрафиолетовое излучение. Внутри батареи расположены трубки с рабочим веществом. Так как тепловое излучение не пропускается сквозь темную пленку, то температура рабочих жидкостей значительно превышает температуру окружающей среды. Следует отметить, что подобные решения эффективно работают лишь в тропических широтах, где нет необходимости поворачивать коллектор вслед за солнцем.

Еще одна разновидность покрытия – вогнутое зеркало. Такое оборудование является весьма дорогостоящим решением, поэтому оно и не нашло широкого применения. Такой коллектор может обеспечить нагрев до трех тысяч градусов по Цельсию.

Данное направление бурно развивается. В Европе уже никого не удивишь домами, отключенными от электрических сетей. Однако в промышленных масштабах электроэнергия этим методом не вырабатывается. На крышах таких домов красуются солнечные батареи. Это весьма сомнительное вложение. В лучшем случае, установка такого оборудования окупится лишь за десть лет эксплуатации.

Использование морских течений

Это весьма необычный способ получения электроэнергии. За счет разницы температур в северных районах океанов и южных (экваториальных), по всему объему возникают мощные течения. Ели погрузить в воду турбину, то мощное течение будет ее вращать. На этом основан принцип действия таких электростанций.

Однако в настоящее время этот источник энергии активно не используется. Очень много инженерных задач еще предстоит решить. Ведутся лишь опытно-экспериментальные работы. Наиболее активно продвигаются в этом направлении англичане. Не исключено, что в недалеком будущем у берегов Великобритании возникнут колонии энергетических установок, лопасти которых будут приводиться в движение морскими течениями.

Способы получения электроэнергии в домашних условиях

Электроэнергию можно вырабатывать и в домашних условиях. А если серьезно подойти к этому вопросу, то можно даже удовлетворить потребности домашнего хозяйства в электроэнергии.

Прежде всего следует отметить, что некоторые из перечисленных способов получения электричества вполне применимы и в условиях частного хозяйства. Так, многие фермеры и просто владельцы загородных имений, устанавливают на своих участках ветряные мельницы. Также все чаще на крышах загородных домов можно увидеть солнечные батареи.

Существуют и иные способы производства электричества, но об их практическом применении не может быть и речи. Это, скорее, ради забавы, или с целью эксперимента.

10 альтернативных источников энергии, о которых вы ничего не знали

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.

Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.

Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.

«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу. 

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.

Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.

Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.

Энергия из тепла человека

Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Такой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.

Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.

Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства. 

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.

Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.

«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.

Смотреть далее: 10 самых красивых ветряных электростанций мира

3 способа получить электричество из земли своими руками

Зачем добывать электричество из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии. Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Единство трёх сред

Самой популярной средой в этом случае является почва. Дело в том, что земля – это единство трёх сред: твёрдой, жидкой и газообразной. Меду мелкими частичками минералов расположены капли воды и пузырьки воздуха. Более того, элементарная единица почвы – мицелла или глинисто-гумусовый комплекс представляет собой сложную систему, обладающую разницей потенциалов.

На внешней оболочке такой системы формируется отрицательный заряд, на внутренней – положительный. К отрицательно заряженной оболочке мицеллы притягиваются положительно заряженные ионы, находящиеся в среде. Так что в почве постоянно происходят электрические и электрохимические процессы.  В более гомогенной воздушной и водной среде таких условий для концентрации электричества нет.

Как получить электроэнергию из земли

Поскольку в почве есть и электричество, и электролиты, то её можно рассматривать не только как среду для живых организмов и источник урожая, но и как мини электростанцию. Кроме того, наши электрифицированные жилища концентрируют в среде вокруг себя и то электричество, которое «стекает» чрез заземление. Этим нельзя не воспользоваться. 

Чаще всего домовладельцы применяют следующие способы извлечения электроэнергии из грунта, расположенного вокруг дома.

Способ 1 — Нулевой провод –> нагрузка –> почва

Напряжение в жилые помещения подается через 2 проводника: фазный и нулевой. При создании третьего, заземлённого, проводника между ним и нулевым контактом возникает напряжение от 10 до 20 В. Этого напряжения достаточно для того, чтобы зажечь пару лампочек.

Таким образом, для подключения потребителей электроэнергии к «земляному» электричеству достаточно создать схему: нулевой провод – нагрузка – почва. Умельцы эту примитивную схему могут усовершенствовать и получить ток большего напряжения.

 получить электроэнергию из земли

Способ 2 — Цинковый и медный электрод

Следующий способ получения электричества основан на использовании только земли. Берутся два металлических стрежня – один цинковый, другой медный, и помещаются в грунт. Лучше, если это будет грунт в изолированном пространстве.

Изоляция необходима для того, чтобы создать среду с повышенной солёностью, что несовместимо с жизнью – в таком грунте ничего расти не будет. Стержни создадут разницу потенциалов, а грунт станет электролитом.

получить электроэнергию из земли

В самом простом варианте получим напряжение в 3 В. Этого, конечно мало для дома, но систему можно усложнить, увеличив тем самым мощность.

Способ 3 — Потенциал между крышей и землёй

3. Достаточно большую разность потенциалов можно создать между крышей дома и землёй. Если на крыше поверхность металлическая, а в земле – ферритовая, то можно добиться разницы потенциалов в 3 В. Увеличить этот показатель можно за счёт изменения размеров пластин, а также расстояния между ними.

получить электроэнергию из земли 

Выводы

  1. Изучая данный вопрос я понял, что современная промышленность не выпускает готовых устройства для получения электричества из земли, но это можно сделать и из подручного материала.
  2. Однако следует учесть, что эксперименты с электричеством опасны. Лучше если вы все же привлечёте специалиста, хотя бы на заключительной стадии оценки уровня безопасности системы.

Сравнительная характеристика различных способов производства электроэнергии (часть первая)

«Необходим объективный подход к ядерной энергетике. Обе стороны должны осознать неотъемлемое право на объективную, а не тактическую информацию, выгодную одной из сторон. Каждый должен сознательно идти на риск.

Обычно риск считается приемлемым, если при сравнении серьезности последствий его теоретическая вероятность намного ниже вероятности природных катастроф, которые рассматриваются как неизбежные и никогда не принимаются в расчет в повседневной жизни … Я не знаю другой области человеческой деятельности кроме атомной энергетики, где было бы так много сделано для оценки риска и гарантии безопасности».

          Кардинал Х. Шверк  (Швейцария) .

Введение.

Среди величайших достижений ХХ века наряду с генной и полупроводниковой технологиями открытие атомной энергии и овладение ею занимает особое место.

Человечество получило доступ к громадному и потенциально опасному источнику энергии, который нельзя ни закрыть, ни забыть, его нужно использовать не во вред, а на пользу человечеству.

У атомной энергии две «родовые» функции – военная, разрушительная и энергетическая – созидательная. По мере уничтожения устрашающих ядерных арсеналов, созданных в период холодной войны, атомная энергия будет проникать внутрь цивилизованного общества в виде тепла, электричества, медицинских изотопов, ядерных технологий, нашедших применение в промышленности, космосе, сельском хозяйстве, археологии, судебной медицине и т.д.

В XXI веке истощение энергоресурса уже не будет первым ограничивающим фактором. Главным становится фактор ограничения предела экологической емкости среды обитания.

Прогресс, достигнутый в превращении атомной энергии в безопасное, чистое и действенное средство удовлетворения растущих глобальных энергетических потребностей, не может быть достигнут никакой другой технологией, несмотря на привлекательность энергии ветра, солнца и других, «возобновляемых» источников энергии.

Однако бытующее в обществе представление об атомной энергии по-прежнему окутано мифами и страхами, которые абсолютно не соответствуют фактическому положению дел, и, в основном, опираются исключительно на чувства и эмоции.

В том случае, Когда голосованием предлагается решать вопросы об опасности там, где действуют законы природы  ( по терминологии В.И.Вернадского, когда «общественное мнение» опережает «общественное понимание» ) , как это ни парадоксально , происходит преуменьшение экологической опасности.

Поэтому одной из важнейших задач, стоящих в настоящее время перед учеными, является задача достижения «общественного понимания» экологических проблем, в том числе – атомной энергетике.

Активность экологических движений должна приветствоваться, но она должна быть конструктивной, а не разрушительной.

Хорошо организованный и цивилизованный диалог между специалистами и общественностью, безусловно, полезен.

Цель нашего проекта – анализ информации, необходимой для выработки собственного осознанного отношения к проблемам развития энергетики вообще и атомной энергетики в частности.

Научно-технический прогресс, энергия и человеческое общество. Источники энергии.

Человечество живет в едином, взаимосвязанном мире, и наиболее серьезные энергетические, экологические и социально-экономические проблемы приобрели глобальный масштаб.

Развитие энергетике связано с развитием человеческого общества, научно-техническим прогрессом, который, с одной стороны, ведет к значительному подъему уровня жизни людей, но с другой оказывает воздействие на окружающую человека природную среду. К  числу важнейших глобальных проблем относятся:

  • рост численности населения Земли и обеспечение его продовольствием;
  • обеспечение растущих потребностей мирового хозяйства в энергии и природных ресурсов;
  • охрана природной среды, в том числе и здоровья человека, от разрушительного антропогенного воздействия технического прогресса.

Такие экологические угрозы, как парниковый эффект и необратимые изменения климата, истощение озонового слоя, кислотные дожди (осадки ), сокращение биологического разнообразия, увеличение содержания токсичных веществ в окружающей среде, требуют новой стратегии развития человечества, предусматривающей согласованное функционирование экономики и экосистемы. Разумеется, потребности современного общества должны удовлетворяться с учётом потребности будущих поколений. Потребление энергии является одним из важных факторов развития экономики и уровня жизни людей. За последние 140 лет потребление энергии во всём мире возросло примерно в 20 раз, а  численность населения планеты – в 4 раза (24).

С учётом темпов нынешнего роста численности населения и необходимости улучшения уровня жизни будущих поколений Мировой Энергетический  Конгресс прогнозирует рост глобального потребления энергии на 50-100% к 2020 году и на 140-320% к 2050г. (3,25).

Что же такое энергия вообще? Согласно современным научным представлениям, энергия-это общая количественная мера движения и взаимодействия всех видов материи, которая не возникает из ничего и не исчезает, а только может переходить из одной формы в другую в соответствии с законом сохранения энергии.

Энергия может проявляться в различных формах : кинетическая, потенциальная, химическая, электрическая, тепловая, ядерная.

Для удовлетворения нашей потребности в энергии существуют возобновляемые и невозобновляемые источники.

Солнце, ветер, гидроэнергия, приливы и некоторые другие источники энергии называют возобновляемыми потому, что их использование человеком практически не изменяет их запасы. Уголь, нефть, газ, торф, уран относятся к невозобнавляемым источникам энергии, и при переработке они теряются безвозвратно.

По прогнозам Международного энергетического агентства потребности в первичных энергоносителях в первом десятилетии ХХ1-го века будут удовлетворены в следующих соотношениях : нефть- не более 40%, газ- менее 24%, твёрдые виды топлива (в основном уголь ) – менее 30%, ядерная энергия -7%, гидроэнергетика – 7%, возобновляемые виды энергии – менее 1%. Региональное потребление первичных энергоносителей может иметь отклонения от мировых тенденций .

Основное количество энергии человечество получает и будет получать в ближайшем будущем, расходуя невозобновляемые источники.

Такие природные ресурсы, как: уголь, нефть, газ –практически невосстанавливаемые, не смотря на то, что их запасы на сегодняшний день во всем мире очень велики, но они все равно когда-либо закончатся. Самое главное то, что при работе ТЭС происходит отравление окружающей среды.

Широко бытующее утверждение об экологической «чистоте» возобновляемых источников энергии справедливо, лишь, если иметь в виду только конечную стадию – энергопроизводящую станцию. Из всех этих видов возобновляемых источников энергии только гидроэнергия          в настоящий момент вносит серьёзный вклад во всемирное производство электроэнергии (17% ).

Гидроэнергетика.

В большинстве промышленно развитых стран незадействованным на сегодня остался лишь незначительный по объёму гидроэнергетический потенциал.

Так,в европейской части страны с наиболее напряжённым топливным балансом использование гидроэнергетических ресурсов достигло 50%, а их экономический потенциал практически исчерпан.

Гидроэнергетические сооружения в потенциале несут в себе опасность крупных катастроф. Так, в 1979 году авария на плотине в Морви (Индия) унесла около 15 тысяч жизней. В Европе в 1963 году авария плотины в Вайонт (Италия) привела к гибели 3 тысячи человек.

Неблагоприятное воздействие гидроэнергетики на окружающую среду, в основном, сводится к следующему : затопление с/х угодий и населённых пунктов, нарушение водного баланса, что ведёт к изменению существования флоры и фауны, климатические последствия (изменение теплового баланса, увеличение количества осадков, скорости ветра, облачности и т.д.).

Перегораживание русла реки приводит к заливанию водоёма и эрозии берегов, ухудшению самоочищения проточных вод и уменьшению содержания кислорода, затруднения свободное движение рыб.

С увеличением масштабов гидротехнического сооружения растёт и масштаб воздействия на окружающую среду.

Энергия ветра.

Энергия ветра в больших масштабах оказалась ненадёжной, неэкономичной и, главное, неспособной давать электроэнергию в нужных количествах.

Строительство ветряных установок усложняется необходимостью изготовления лопастей турбины больших размеров. Так, по проекту ФРГ установка мощностью 2-3 МВт должна иметь диаметр ветрового колеса 100м, причём она производит такой шум, что возникает необходимость отключения её в ночное время.

В штате Огайо была построена крупнейшая в мире ветросиловая установка 10МВт. Проработав несколько суток, была продана на слом по цене 10дол. За тонну. В радиусе нескольких километров жить стало невозможно из-за инфразвука, совпадающего с альфа-ритмом головного мозга, что вызывает психические заболевания.

К серьёзным негативным последствиям использование энергии ветра можно отнести помехи для воздушного сообщения и для распространения радио-и телеволн, нарушения путей миграции птиц, климатические изменения вследствие нарушения естественной циркуляции воздушных потоков.

Солнечная энергия.

Солнечная энергия. Техническое использование солнечной энергии осуществляется в нескольких формах: применение низко – и высокотемпературного оборудования, прямое преобразование солнечной энергии в электрическую на фотоэлектрическом оборудовании.

Принципиальными особенностями солнечного излучения являются огромные потенциальные ресурсы (в 4000 раз превышает прогнозируемые энергопотребности человечества в 2020 году ) и низкая интенсивность. Так, среднесуточная интенсивность солнечного излучения для средней полосы европейской части России составляет 150Вт/м , что в 1000раз меньше тепловых потоков в котлах ТЭС.

К сожалению, пока не видно, какими путями эти огромные потенциальные ресурсы можно реализовать в больших количествах. Одним из наиболее важных препятствий является низкая интенсивность солнечного излучения, что проблему необходимости концентрирования солнечной энергии в сотни раз ещё до того, как она превратится в тепло. Практическая реализация концентрации солнечной энергии требует отчуждения огромных земельных площадей. Для размещения солнечной электростанции (СЭС) мощностью 1000МВт (Эл) в средней полосе европейской части необходима площадь при 10%к.п.д. в 67км2. К этому надо добавить ещё и земли, которые потребуются отвести под различные промышленные предприятия, изготавливающие материалы для строительства и эксплуатации СЭС.

Следует подчеркнуть, что материалоёмкость, затраты времени и людских ресурсов в солнечной энергетике в 500 раз больше, чем в традиционной энергетике на органическом топливе и в атомной энергетике.

Действующая в Крыму СЭС мощностью 5 МВт потребила в 1988 году на собственные нужды в 20 раз больше энергии, чем произвела.

Геотермальная энергия

Отрицательными экологическими последствиями использования геотермальной энергии подземных источников горячей воды является возможность пробуждения сейсмической активности в районе электростанции, опасность локального оседания грунтов, эмиссия отравляющих газов (пары ртути, сероводорода, аммиака, двуокиси и окиси углерода, метана ), которые представляют опасность для человека, животных и растений.

Проведенные исследования показали, что возможная роль возобновляемых источников энергии не выходит за пределы вспомогательного энергоресурса, решающего региональные проблемы. Ресурсы таких источников, как гидроэнергетика, энергия ветра, морских волн и приливов, недостаточны. Солнечная энергетика и энергия  геотермальная с теоретически неограниченными ресурсами характеризуются чрезвычайно низкой интенсивностью поступающей энергии.

Кроме того необходимо помнить, что с использованием новых видов энергии возникает и новый тип экологических последствий, которые могут привести к изменению природных условий в глобальных масштабах и которые пока в полной мере трудно представить. Исследования последних лет показали, что на определенные планы с термоядерным синтезом ( проект ИТЭР ) преждевременно рассчитывать.

Тепловые электростанции.

Тепловые электростанции (ТЭС) появились в конце 19-ого века почти одновременно в России, США и Германии, а вскоре и в других странах. Первая центральная электрическая станция  была введена в эксплуатацию в Нью-Йорке в 1882 году для осветительных целей. Первая крупная тепловая электростанция с паровыми турбинами вступила в строй в 1906 году в Москве. Сегодня ни один более или менее крупный город не обходится без собственных электростанций. Тепловая электростанция – сложное и обширное хозяйство, порой она занимает территорию в 70 га, помимо главного корпуса, где размещаются энергоблоки, здесь располагаются различные вспомогательные производственные установки и сооружения, электрические распределительные устройства, лаборатории, мастерские, склады и т.д. Генераторы тепловых электростанций вырабатывают ток напряжением в десятки киловольт. Мощность теплоэлектростанций сегодня достигает сотен МВт. В США существует ТЭС мощностью 1,2-1,5 млн. кВт и более. В нашей стране от них поступает к потребителям наибольшая часть получаемой электроэнергии (69%). Особый вид тепловых электростанций – теплоэлектроцентрали (ТЭЦ). Эти предприятия производят энергию и тепло одновременно, поэтому коэффициент полезного действия используемого топлива у них достигает 70%, а у обычных тепловых электростанций лишь 30-35%. ТЭЦ всегда размещают вблизи потребителей – в крупных городах, так как передавать тепло (пар, горячую воду) без больших потерь можно максимум на 15-20 километров.

Размещение электростанций зависит от двух основных факторов – топливно-энергетических ресурсов и потребителей энергии, поэтому тепловые электростанции размещаются в районах топливных баз при наличии малокалорийного топлива – его не выгодно далеко перевозить. Например, Канско-Ачинский уголь использует Берёзовская ГРЭС-1 (ГРЭС – государственная районная электростанция). На попутном нефтяном газе работают две Сургутские электростанции. Если же электростанции используют высококалорийное топливо, которое выдерживает дальние перевозки (природный газ), они строятся ближе к местам потребления электроэнергии.

Тепловая энергетика оказывает огромное влияние на окружающую среду, загрязняет воду и атмосферный воздух. Самая грязная и экологически опасная – угольная электростанция. При мощности в 1 млрд. Вт она ежегодно выбрасывает в атмосферу 36,5 млрд. куб. метров горячих газов, содержащих пыль, вредные вещества и 100 млн. куб. метров пара. В отходы идут 50 млн. куб. метров сточных вод, в которых содержится 82 тонны серной кислоты, 26 тонн хлоридов, 41 тонна фосфатов и 500 тонн твёрдой извести. Ко всем этим выбросам необходимо добавить углекислый газ – результат сгорания угля. Наконец, остаётся 360 тысяч тонн золы, которую приходится складировать. В целом для работы угольной электростанции ежегодно требуется 1 млн. тонн угля, 150 млн. кубических метров воды и 30 млрд. кубических метров воздуха. Если учесть, что такие электростанции работают десятилетиями, то их воздействие на окружающую среду можно сравнить с вулканической деятельностью. Каждый         крупный город имеет несколько подобных «вулканов». Например, энергией и теплом Москву обеспечивает 15 теплоэлектроцентралей. В течение 20-ого века тепловые электростанции существенно повысили концентрацию ряда газов в атмосфере. Так, концентрация углекислого газа выросла на 25% и продолжает ежегодно увеличиваться на 0,5%, вдвое выросла концентрация метана и увеличивается на 0,9% в год, постоянно растут концентрации оксидов азота и двуокиси серы. Насыщенный парами воздух разъедает здания и сооружения, ранее устойчивые соединения становятся неустойчивыми, нерастворимые вещества переходят в растворимые и т.д. Избыточное поступление питательных веществ в водоёмы ведёт к их ускоренному «старению», заболевают леса, повышается уровень напряжения электромагнитных полей. Всё это чрезвычайно негативно сказывается на здоровье людей, риск преждевременной смерти увеличивается. Кроме того, повышенное содержание углекислого газа и метана в атмосфере является одной из причин возникновения парникового эффекта.

Парниковый эффект.

Есть несколько точек зрения на эту проблему. Согласно недавним решениям ООН для улучшения климата Земли наиболее развитый государства, такие как США, Япония  и страны Европейского союза, обязаны сократить к 2012 году объём выброса тепличных газов на 6% по сравнению с 1990 годом. Однако многие специалисты считают, что и этого недостаточно. Они настаивают  на 60%,  по их мнению, в борьбу должны включиться не только развитые страны, но и все остальные. Но есть и другая точка зрения: В 1997 году почти 1700 американских учёных подписали обращение к президенту страны, где поставили под сомнение сам подход к решению проблемы. Выбрасываемый промышленностью углекислый газ практически не влияет на климат, считают они. Вулканические извержения, другие природные катаклизмы поставляют подобных соединений куда больше. Например, учёные обратили внимание, что из подпочвенных слоёв тундры в последнее время стало выделяться больше углекислого газа и метана, чем прежде, а по оценкам учёных здесь содержится примерно треть всех земных  углесодержащих газов. Было установлено, что с каждого кв. метра тундры вода уносит 5 граммов углесодержащих веществ, примерно половина из них растворяется в реках, озёрах, ручьях, а затем поступает в атмосферу, остальные уходят в Северный Ледовитый океан. Средняя температура поверхности Земли за последний год поднялась на полградуса, но, по словам экспертов, им потребуется несколько лет,

чтобы определить, свидетельствуют ли данные показатели об ускорении глобального потепления. По мнению учёных, парниковых эффект – результат того, что климат Земли постоянно меняется. Возможно, сейчас происходит потепление, так как заканчивается последний ледниковый период, а колебания климата связаны с солнечной активностью, появлением пятен, увеличением излучаемого тепла. Опасности, связанные с повышением концентрации углекислого газа в атмосфере состоят в повышении температуры Земли. Но общепринятые оценки метеорологов показывают, что повышение  содержания углекислого газа в атмосфере приведёт к повышению температуры практически только в высоких широтах, особенно в Северном полушарии, причём в основном это потепление произойдёт зимой. По оценки специалистом Института сельхозметеорологии Роскомгидромета повышение концентрации этого газа в атмосфере в два раза приведёт к удвоению полезной сельскохозяйственной площади России, с 5 до 11 млн. кв. километров. В различных источниках также указываются  возможные повышения уровня Мирового океана в пределах от 0,2 до 1,4м, многие утверждают, что скоро нас ожидает великий потоп. Но почти все ледники Северного полушария растаяли около 9 тысяч лет назад, осталась только Гренландия. Но и она вместе  со льдами Северного Ледовитого океана не повысит при таянии уровень Мирового океана даже на 1мм.

Основные показатели  стран, развивающих теплоэнергетику

Показатель

 

Франция

Швеция

Япония

Германия

Великобритания

США

Россия

На душу населения, т

Диоксид углерода CO2

5.6

6.74

1.5

1.8

1.28

2.56

0.7

Оксид серы, SO2

0,13

0,16

0,04

0,04

0,02

0,06

0,01

Оксид азота, NOx

0,08

0,1

0,02

0,02

0,02

0,03

0,005

Зола

0,42

0,4

0,13

0,12

0,1

0,17

0,06

Шлаки

0,08

0,08

0,02

0,02

0,02

0,03

0,01

Зола, не улавливаемая фильтрами

0,004

0,004

0,001

0,001

0,001

0,001

0,0006

Высвобождённые радионуклиды, Ки

13,7

15,1

3,4

3,9

2,8

5,8

1,75

Из таблицы совершенно очевидно, что все ведущие страны, даже при очень развитой технологии, не могут избавиться от огромных выбросов, отравляющих атмосферу. Оксид серы, диоксид углерода, способствуют развитию сердечнососудистых и онкологических заболеваний, которые по смертности являются ведущими в мире. Обращает на себя внимание тот факт, что при работе ТЭС так же, как и при работе АЭС, образуются радионуклиды, которые на ТЭС никак не улавливаются.

Кислогубская ПЭСПриливные электростанции.

Уровень воды в течение суток меняет 4 раза, такие колебания особенно заметны в заливах и устьях рек, впадающих в море. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. ПЭС двустороннего действия (турбины работают при движении воды из моря в бассейн и обратно) способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 году во Франции в устье реки Ранс, впадающей в пролив Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение ГЭС такой же мощности, первый опыт эксплуатации приливной электростанции оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется. В 1968 году на Баренцевом море вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место её строительства – Кислая губа представляет собой узкий залив шириной 150 м и длиной 450 м. Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется также использовать огромный энергетический потенциал Охотского моря, где местами, например в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе – 12-14 м. В 1985 году была пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м.

С точки зрения экологии ПЭС имеют бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.

Кислогубская ПЭССолнечные космические электростанции.

Получать и использовать «чистую» солнечную энергию на поверхности  Земли мешает атмосфера, поэтому появляются проекты размещения  солнечных электростанций в космосе, на околоземной орбите. У таких станций  есть несколько достоинств: невесомость позволяет создать  многокилометровые конструкции, которые необходимы для получения энергии; преобразование одного вида энергии в другой неизбежно сопровождается  выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.

К проектированию солнечных космических электростанций (СКЭС) конструкторы приступили ещё в конце 60-ых годов 20-ого века. Было предложено несколько вариантов транспортировки энергии из космоса на Землю, но наиболее рациональным было признано предложение использовать её  на месте выработки, для этого необходимо перенести основных потребителей электроэнергии (металлургия, машиностроение, химическая промышленность) на спутник Земли Луну или астероиды. Любой вариант СКЭС предполагает, что это колоссальное сооружение, причём не одно. Даже самая маленькая СКЭС должна весить десятки тысяч тонн. Современные средства выведения в состоянии доставить на низкую – опорную орбиту необходимое количество блоков, узлов и панелей солнечных батарей.

Строительство солнечных космических электростанций сейчас кажется фантастикой, но в скором времени, возможно, появится  первая СКЭС, которая даст начало новому уровню развития энергетики.

Как производят и передают электроэнергию: от электростанций до дома

Электричество, как основополагающий двигатель развития цивилизации, вошло в жизнь человечества сравнительно недавно. Активное использование электроэнергии началось чуть более ста лет назад.

Производство электроэнергии

Производство электроэнергии

История мировой электроэнергетики

Электроэнергетика – стратегическая отрасль экономической системы любого государства. История возникновения и развития ЭЭ берёт своё начало с конца XIX столетия. Предтечей появления промышленной выработки электроэнергии являлись открытия основополагающих законов о природе и свойствах электрического тока.

Отправной точкой, когда возникли производство и передача электроэнергии, считают 1892 год. Именно тогда была построена первая электростанция в Нью-Йорке под руководством Томаса Эдисона. Станция стала источником электрического тока для ламп уличного освещения. Это был первый опыт перевода тепловой энергии от сгорания угля в электричество.

С тех пор началась эра массового строительства тепловых электростанций (ТЭС), работающих на твёрдом топливе – энергетическом угле. С развитием нефтяной промышленности появились огромные запасы мазута, которые образовывались в результате переработки нефтепродуктов. Были разработаны технологии получения носителя тепловой энергии (пара) от сжигания мазута.

С тридцатых годов прошлого века получили широкое распространение гидроэлектростанции (ГЭС). Предприятия стали использовать энергию ниспадающих потоков воды рек и водохранилищ.

В 70-е годы началось бурное строительство атомных электростанций (АЭС). Одновременно с этим стали разрабатываться и внедряться альтернативные источники электроэнергии: это ветровые установки, солнечные батареи, щелочно-кислотные геостанции. Появились мини установки, использующие тепло для получения электричества в результате химических процессов разложения навоза и бытового мусора.

История российской электроэнергетики

Мощным толчком развития производства электрической энергии стало принятие молодым государством СССР плана ГОЭЛРО в 1920г. Было принято решение о строительстве 10 электростанций общей мощностью 640 тыс. кВт в течение 15 лет. Однако уже к 1935 году было введено в строй 40 государственных районных электростанций (ГРЭС). Была создана мощная база индустриализации России и союзных республик.

В 30-х годах началось массовое строительство гидроэлектростанций (ГЭС) на территории СССР. Осваивались реки Сибири. На Украине была возведена знаменитая Днепрогэс. В послевоенные годы государством уделялось внимание строительству ГЭС.

Важно! Появление в России дешевого электричества решило проблему городского транспорта в крупных областных центрах. Трамваи и троллейбусы не только стали экономическим стимулом использования электроэнергии в транспорте, но и принесли значительное сокращение потребления жидкого топлива. Дешёвый энергоресурс привёл к появлению на железных дорогах электровозов.

В 70-е годы в результате мирового энергетического кризиса произошло резкое повышение цен на нефть. В России стал внедряться план развития атомной энергетики. Практически во всех республиках Советского Союза стали строить АЭС. Лидером в этом отношении стала нынешняя Россия. На сегодняшний день на территории Российской Федерации действуют 21 АЭС.

Территориальная структура производства электроэнергии

Территориальная структура производства электроэнергии

Основные технологические процессы в электроэнергетике

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

ЭлектростанцияТопливоГенерация
ТЭСУголь, мазутПолучение пара от сгорания топлива, который движет турбины генераторов
ГЭСПотенциальная энергия потока водыДвижение турбин под напором воды
АЭСУрановые сердечникиПолучение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Отрасли промышленности электроэнергетики

Список промышленных источников производства электрической энергии состоит из 4 отраслей энергетики:

  • атомная;
  • тепловая;
  • гидроэнергетика;
  • альтернативная.

Атомная энергетика

Эта отрасль энергодобычи является на сегодня самым эффективным способом получения электричества за счёт ядерной реакции. Для этого используют очищенный уран. Сердцем станции является атомный реактор.

Схема работы ядерного реактора

Схема работы ядерного реактора

Источниками тепла являются ТВЭЛы (тепловыделяющие элементы). Они представляют собой тонкие длинные циркониевые трубки, в которых помещены урановые таблетки. Их объединяют в группы – ТВС (тепловыделяющая сборка). Ими загружают корпус реактора, в теле которого размещены трубы с водой. Во время ядерного распада урана происходит выделение тепла, которое нагревает воду в первичном контуре до 3200.

Пар поступает на лопасти турбин, которые вращают генераторы переменного тока. Электричество через трансформаторы попадает в общую энергетическую систему.

Обратите внимание! Помня о трагедии Чернобыля, учёные всего мира совершенствуют систему безопасности работы АЭС. Последние разработки в атомной энергетике обеспечивают практически 100% безвредность атомных электростанций.

Вид на АЭС

Вид на АЭС

Тепловая энергетика

Тепловые электростанции работают по принципу сжигания природного топлива: угля, газа и мазута. Вода, проходящая по трубопроводам через котлы, превращается в пар и в дальнейшем подаётся на лопасти генераторных турбин.

Дополнительная информация. За 4 года эксплуатации одной группы ТВЭЛов вырабатывается такое количество электроэнергии, для получения которого ТЭС потребуется сжечь 730 цистерн природного газа, 600 вагонов угля или 900 нефтеналивных железнодорожных танкеров.

Помимо этого, тепловые электростанции сильно ухудшают экологическую обстановку в районах месторасположения. Продукты горения топлива сильно загрязняют атмосферу. Лишь только станции, работающие на газотурбинных установках, отвечают требованиям экологической чистоты.

Гидроэнергетика

Примерами эффективного применения гидроэнергетики являются Асуанская, Саяно-Шушенская ГЭС и др. Самые экологичные электростанции, использующие кинетическую энергию движения воды, не производят никаких вредных выбросов в окружающую природу. Однако массовое возведение гидросооружений ограничено совокупностью обстоятельств. Это наличие определённой величины природного водного потока, особенностью рельефа местности и многое другое.

ГЭС

ГЭС

Альтернативная энергетика

Научно-техническая революция не замирает ни на минуту. Каждый день приносит новшества в получение электрического тока. Пытливые умы постоянно заняты поисками новых технологий выработки электроэнергии, которые выступают в роли альтернативы традиционным способам получения электричества.

Следует упомянуть ветровые генераторы, приливные морские станции и солнечные батареи. Наряду с этим, появились устройства, вырабатывающие электроток, используя тепло разложения бытовых отходов, продуктов жизнедеятельности крупного рогатого скота. Есть такие устройства, которые используют температурную разницу различных слоёв грунта, щелочную и кислотную среду почвы на разных уровнях. Альтернативные источники электроэнергии объединяет одно – это несопоставимость выработанного количества энергии с объёмами электричества, которые получают традиционными способами (АЭС, ТЭС и ГЭС).

Передача и распределение электрической энергии

Независимо от устройства электростанций, их энергия поставляется в единую энергосистему страны. Передаваемая электроэнергия поступает на распределительные подстанции, оттуда уже доходит до самих потребителей. Передача электричества от производителей осуществляется воздушным путём через линии электропередач. На короткие дистанции ток проходит в кабеле, который прокладывают под землёй.

Потребление электрической энергии

С появлением новых промышленных объектов, вводом в эксплуатацию жилых комплексов и зданий гражданского назначения потребление электроэнергии с каждым днём возрастает. Практически ежегодно на территории России входят в строй новые электростанции, или существующие предприятия пополняются новыми энергоблоками.

Виды деятельности в электроэнергетике

Электрические компании занимаются бесперебойной доставкой электричества каждому потребителю. В энергетической сфере уровень занятости превышает этот показатель некоторых ведущих отраслей народного хозяйства государства.

Оперативно-диспетчерское управление

ОДУ играет важнейшую роль в перераспределении энергопотоков в обстановке изменяющегося уровня потребления. Диспетчерские службы направлены на то, чтобы передавать электрический ток от производителя потребителю в безаварийном режиме. В случае каких-либо аварий или сбоев в линиях электропередач ОДУ выполняют обязанности оперативного штаба по быстрому устранению этих недостатков.

Энергосбыт

В тарифах на оплату за потребление электричества включены расходы на прибыль энергокомпаний. За правильностью и своевременностью оплаты за потреблённые услуги следит служба – Энергосбыт. От неё зависит финансовое обеспечение всей энергосистемы страны. К неплательщикам применяются штрафные санкции, вплоть до отключения электроснабжения потребителя.

Энергосистема – кровеносная система единого организма государства. Производство электроэнергии является стратегической сферой безопасности существования и развития экономики страны.

Видео

Как получить электричество из земли и возможно ли это?

Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.

Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.

Однако на практике  все получается далеко не так складно:

  • Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе. 

Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.

Что можно попробовать сделать?

Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с  теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа.  Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученого, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:

Схема получения электричества по БелоусовуРис. 1. Схема получения электричества по Белоусову

Извлечение электричества из земли, согласно этой схемы, будет происходить по такому принципу:

  • Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
  • Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
  • Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.

Из земли и нулевого провода

Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.

Между нулем и землейРис. 2. Между нулем и землей

Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www.asutpp.ru/kontur-zazemleniya.html.  Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут  принимать в учет это напряжение, поэтому его можно считать бесплатным.

Стержни из цинка и меди (гальванический
способ)

Стержни из цинка и медиРис. 3. Стержни из цинка и меди

В таком методе получения 
электричества из земли 
используется тот же способ, что и в обычной батарейке. Здесь источником
электроэнергии  выступает химическая
реакция, которая возникает при взаимодействии металлических электродов с
природным электролитом. Однако мощность этого природного генератора
электричества и разность потенциалов будет зависеть от ряда факторов:

  • Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем  большую добычу электричества можно осуществить таким методом.
  • Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
  • Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.

Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо  залить крепким раствором обычной пищевой соли.

Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов  и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.

Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.

Потенциал между крышей и землей

Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.

Потенциал между крышей и землейРис. 4. Потенциал между крышей и землей

Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2 В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразно.

Выводы

Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.

Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные  результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.

Видео по теме

«Способы получения электроэнергии»

Информационно – познавательный проект

по теме: «Способы получения электроэнергии»

Автор проекта: Купаев Владислав,

обучающийся 4а класса

Наставник проекта: Купаева И. Н.,

учитель физики

г. Магнитогорск

Содержание

Введение 3

Теоретическая часть. Способы получения электроэнергии 4

Тепловые электростанции 4

Гидроэлектростанции 4

1.3. Атомная электростанция 5

1.4. Альтернативные источники энергии 6

1.4.1. Солнечные батареи 6

1.4.2. Ветрогенераторы 7

1.4.3. Биогаз 8

2. Практическая часть. 10

2.1. Электростанции в городе Магнитогорске 10

2.2 Альтернативные способы получения электроэнергии в городе Магнитогорске 12

Заключение 13

Список литературы 14

Введение

Невозможно представить жизнь современного человека без бытовых приборов, компьютеров, гаджетов и других электроприборов. Любое отключение электроэнергии доставляет массу неудобств. В последнее время много говорят о способах экономии электроэнергии, об использовании новых энергосберегающих лампочек для освещения. Моя семья проживает в небольшом промышленном городе Магнитогорске. Меня заинтересовало, где и как вырабатывается электроэнергия, которую мы используем?

Проблема: какие способы получения электроэнергии существуют в мире в настоящее время, и какие из них используются в моем городе.

Цель: Изучить способы получения электроэнергии.

Задачи:

Изучить источники информации о способах получения электроэнергии.

Выяснить способы получения электроэнергии, их преимущества и недостатки.

Выяснить способы получения электроэнергии в городе Магнитогорске.

Оформить газету о способах получения электроэнергии.

Ценность моей работы заключается в том, что я узнаю больше про пути получения электроэнергии, в том числе в городе Магнитогорске и смогу поделиться этой информацией со сверстниками.

Теоретическая часть. Способы получения электроэнергии

Тепловые электростанции

Тепловая электростанция (ТЭС) — электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в конце XIX века и получили преимущественное распространение в середине 70-х гг. XX века. Около 75% всей электроэнергии России производится на ТЭС.

Преимущества:
1. Используемое топливо достаточно дешево. 
2. Требуют меньших капиталовложений по сравнению с другими электростанциями. 
3. Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом. 
4. Занимают меньшую площадь по сравнению с гидроэлектростанциями. 
5. Стоимость выработки электроэнергии меньше, чем у дизельных электростанций.

Недостатки:
1. Загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти. 
2. Более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями.

1.2. Гидроэлектростанции

Гидроэлектростанции (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.
Принцип работы ГЭС. Работа гидроэлектростанции достаточно проста. Возведенные гидротехнические сооружения обеспечивают стабильный напор воды, который поступает на лопасти турбины. Напор приводит турбину в движение, в результате чего она вращает генераторы. Последние и вырабатывают электроэнергию, которую затем по линиям высоковольтных передач доставляют потребителю.

Преимущества гидроэлектростанций:

Работа ГЭС не сопровождается выделением  газа и углекислоты, окислов азота и серы, пылевых загрязнителей и других вредных отходов, не загрязняет почву.

Вода — возобновляемый источник энергии.

Производительность ГЭС легко контролировать, изменяя скорость водяного потока (объем воды, подводимый к турбинам).

Водохранилища, сооружаемые для гидростанций, можно использовать в качестве зон отдыха, порой вокруг них складывается поистине захватывающий пейзаж.

Вода в искусственных водохранилищах, как правило, чистая, так как примеси осаждаются на дне. Эту воду можно использовать для питья, мытья и ирригации.

Недостатки гидроэлектростанций:

Большие водохранилища затопляют значительные участки земли, которые могли бы использоваться с другими целями.

Разрушение или авария плотины большой ГЭС практически неминуемо вызывает катастрофическое наводнение ниже по течению реки.

Сооружение ГЭС неэффективно в равнинных районах.

Протяженная засуха снижает и может даже прервать производство электроэнергии.

Уровень воды в искусственных водохранилищах постоянно и резко меняется. На их берегах строить загородные дома не стоит!

Плотина снижает уровень растворенного в воде кислорода, поскольку нормальное течение реки практически останавливается. Это может привести к гибели рыбы и поставить под угрозу растительную жизнь в самом водохранилище и вокруг него.

Плотина может нарушить нерестовый цикл рыбы. С этой проблемой можно бороться, сооружая рыбоходы и рыбоподъемники в плотине или перемещая рыбу в места нереста с помощью ловушек и сетей. Однако это приводит к удорожанию строительства и эксплуатации ГЭС.

1.3. Атомная электростанция

Атомная электростанция АЭС — комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции. В качестве распространенного топлива для атомных электростанций применяется уран. Реакция деления осуществляется в основном блоке атомной электростанции – ядерном реакторе.

Преимущества атомной энергетики:

1. Остается атомная энергетика. Благодаря особенностям ядерных реакций затраты топлива очень и очень невелики. Это основное преимущество атомной энергетики.

2. Второе преимущество – это экологическая чистота. Выбросы от АЭС, хотя в это и трудно поверить, практически безвредны в отличие от ТЭС. Например, электростанции, работающие на угле, выбрасывают в атмосферу гораздо больше радионуклидов, чем АЭС, не говоря уже о выбросах углекислого газа и прочих канцерогенов

Недостатки атомной энергетики:

1. Сложность утилизации радиоактивных отходов.

2. Опасность аварий. Множество различных исследований ведется во многих странах в сторону решения этих проблем. Современные АЭС очень надежны, а отходы в наше время утилизируют максимально эффективно.

Однако проблемы атомной энергетики существуют и не могут касаться только одного государства или группы людей. Это дело всего человечества и решать его надо сообща. Стоит вспомнить только аварию на японской АЭС во время цунами. Потому что, то самое завтра, когда мы окажемся без нефти и газа, может наступить уже в прямом смысле слова завтра и подготовиться к нему надо сегодня, прямо сейчас.

1.4.Альтернативные источники энергии

1.4.1. Солнечные батареи

Индустрия солнечных батарей постоянно расширяется. По оценкам специалистов мощность такого среднестатистического источника электроэнергии каждый год увеличивается в три раза. Это свидетельствует о развитии данной области.

Преимущества:

1. Солнце — экологически чистый источник энергии, который не загрязняет окружающую среду. Эксплуатация солнечных панелей не приводит к выбросам парниковых газов или образованию отходов.

2. Солнечная энергия неисчерпаема, в отличие от традиционных видов топлива. Стоит отметить, что в России запасов нефти хватит больше чем на 50 лет, газа — более чем на 100 лет, а угля еще на 500 лет. Но не во всем мире так. Для сравнения, в Великобритании нефть кончится через 5,2 года, газ — через 3 года, уголь — через 4,5 года. Во Франции и того хуже — все это вместе истощится меньше чем через год. А вот, Германия, напротив, может прожить еще 250 лет на угле, но только два года на газе и меньше года на нефти.

3. Солнечные батареи после установки требуют минимального обслуживания и производят энергию без участия человека.

4. Среди других достоинств батарей на солнечной энергии стоит отметить длительный срок службы. Он составляет — 25 лет и более без ухудшения эксплуатационных характеристик.

5. Использование солнечной энергии субсидируется государством. Например, во Франции за установку батареи дома возмещается до 60% от стоимости.

Недостатки:

 1. Солнечная энергетика не выдерживает конкуренции, когда дело доходит до серьезных объемов производства электроэнергии. Действительно, определенные виды энергий, например ядерная, могут быть гораздо более выгодными в финансовом отношении.

2. Производство энергии может оказаться нерегулярным из-за погодных условий.

3. Для производства достаточного количества электроэнергии необходимо устанавливать большие площади солнечных батарей.

Солнечная энергетика открыта уже довольно давно, но ее долго не рассматривали в качестве источника энергии из–за дороговизны. Развитие технологий привело к снижению цен, и солнечные панели стали серьезным конкурентом для традиционных источников энергии.

1.4.2. Ветрогенераторы

Энергия ветра может быть преобразована в электричество и для этого используют ветрогенераторы. Турбины данного типа имеют привлекательный внешний вид и обладают достаточно высокой эффективностью. Большинство моделей не требуют управления человеком и служат на протяжении долгого времени. Разделяют горизонтальные и вертикальные турбины. Горизонтальные устройства оснащены флюгером и системой слежения. У вертикальных устройств нет необходимости ориентации на ветер и они отличаются большей надёжностью.

Преимущества:

1. Используется полностью возобновляемый источник энергии.. Источник принципиально неисчерпаем.

2. В процессе работы ветряной электростанции полностью отсутствуют вредные выбросы.

3. Ветряная турбина и основные рабочие части таких генераторов расположены на значительной высоте над землей, поэтому окружающее пространство может быть с успехом использовано для хозяйственных нужд. 

4. Применение ветрогенераторов особенно оправдано для изолированных территорий.

5. После введения в эксплуатацию ветряной электростанции, стоимость киловатт-часа генерируемой таким образом электроэнергии значительно снижается.

6. Техническое обслуживание в процессе эксплуатации минимально. 

Недостатки:

Зависимость от внешних условий в конкретный момент. Ветер может быть сильным, или его может не быть вообще. Для обеспечения непрерывной подачи электроэнергии потребителю в таких непостоянных условиях, необходима система хранения электроэнергии значительной емкости и инфраструктура для передачи этой энергии.

Сооружение ветровой установки требует материальных затрат.

Некоторые эксперты считают, что ветряки искажают природный ландшафт, что их вид нарушает естественную природную эстетику. Поэтому крупным фирмам приходится прибегать к помощи профессионалов по дизайну и ландшафтной архитектуре.

Ветряные установки производят аэродинамический шум, который может причинить дискомфорт людям. По этой причине в некоторых странах Европы принят закон, по которому расстояние от ветряка до жилых домов не должно быть меньше 300 метров, а уровень шума не должен превышать 45 дБ днем и 35 дБ ночью.

Есть небольшая вероятность столкновения птицы с лопастью ветряка.

1.4.3. Биогаз

Биогаз является высококачественным и полноценным носителем энергии и может многосторонне использоваться как топливо в домашнем хозяйстве и в среднем и мелком предпринимательстве для приготовления пищи, производства электроэнергии, отопления жилых и производственных помещений. В качестве исходного сырья используются отходы крупного рогатого скота, птицеводства, отходы спиртовых и ацетонобутиловых заводов, биомасса различных видов растений. Переработанная биомасса используется для удобрения полей и производства компоста. Таким образом, создается система замкнутого цикла: растения — корма (пищевые продукты) — отходы — растения. Такая система обеспечивает сельское хозяйство удобрением и кормами, производство — сырьем и энергией. При этом не загрязняется окружающая среда, уменьшается использование минеральных источников энергии и выделение газов, вызывающих парниковый эффект.

В настоящее время во многих странах создаются также специальные обустроенные хранилища твердых бытовых отходов городов с целью извлечения из них биогаза для производства электрической и тепловой энергии.

Преимущества:

Это один из наиболее доступных видов альтернативного топлива (в частности для фермеров), так как сырьевая база для его производства всегда в наличии и всегда под рукой. 

Биогаз можно производить из самых разных органических отходов, а это значит, что биогаз можно производить в любом регионе или стране мира, вне зависимости от климатических условий или рельефа. Кроме того, производство биогаза решает проблемы, связанные с утилизацией мусора. Это означает, что есть реальные перспективы решения весьма важной проблемы, которая уже давно заботит многих учёных, политиков и простых людей во всём мире.

 В процессе производства биогаза получаются на выходе органические удобрения, которые являются идеальным удобрением для почвы. 

Относительно простая по конструкции и не дорогая по цене биогазовая установка.

Недостатки:

Данный вид биотоплива является доступным, в основном, жителям сельских районов и владельцам ферм.

 Сам процесс производства биогаза является достаточно взрывоопасным производством. Кроме того, для производства биогаза можно использовать любое органическое сырье, поэтому многие фермеры специально выращивают масляные зерновые культуры для производства биогаза, тем самым истощая землю и не используя полученный урожай по его прямому назначению.

Преимущества и недостатки разных способов получения электроэнергии можно представить в виде таблицы:

Способ получения электроэнергии

Преимущества

Недостатки

Тепловые электростанции

5

2

Гидроэлектростанции

5

7

Атомная электростанция

2

2

Солнечные батареи

5

3

Ветрогенераторы

7

5

Биогаз

4

2

2. Практическая часть.

2.1. Электростанции в городе Магнитогорске

Теплоэлектроцентраль Магнитогорского металлургического комбината

В городе Магнитогорске находится Теплоэлектроцентраль Магнитогорского металлургического комбината (ТЭЦ ОАО ММК). Главной задачей ТЭЦ является бесперебойное снабжение электроэнергией промышленных объектов ОАО «ММК», а также обеспечение паром, технической водой турбокомпрессоров кислородного цеха и левобережную часть города, часть правого берега.

История строительства ТЭЦ

В решении Совета Министров СССР от 2 июня 1948 года записано: «Для покрытия возросших тепловых и электрических нагрузок ММК и его района в Магнитогорске должна быть сооружена новая мощная теплоэлектроцентраль».

12 февраля 1952 года трест «Магнитострой» приступил к бетонированию фундаментов под колонны главного корпуса теплоэлектроцентрали. 25 февраля 1954 года на новой ТЭЦ был пущен в эксплуатацию первый энергетический паровой котел производительностью 170 т пара в час и турбогенератор мощностью 50 МВт. Первый этап строительства ТЭЦ завершился в 1957 году. К тому времени также были введены в работу котлоагрегаты № 2-4, турбогенераторы № 2 и №3.

С лета 1963 по декабрь 1966 года пущены в эксплуатацию турбогенератор № 4, котлоагрегаты № 5 и №6, пиковый водогрейный котел № 1. Завершено строительство второй очереди ТЭЦ. В 1965 году на котлы ТЭЦ был принят природный газ. Началось сокращение сжигания каменного угля и уменьшение выбросов золы в атмосферу.

К 1970 году на ТЭЦ работали уже восемь котлоагрегатов общей паропроизводительностью 1960 т в час и шесть турбогенераторов. Установленная электрическая мощность ТЭЦ составила 300 МВт, а тепловая — по отпуску тепла с горячей водой — 760 Гкал/ час. В те годы ТЭЦ ММК была самой современной и мощной электростанцией в составе министерства черной металлургии СССР.

Влияние ТЭЦ на окружающую среду

Дело в том, что при сжигании газа, как и при сжигании мазута, в атмосферу попадает окись серы, а по количеству выбросов оксидов азота при сжигании газ почти не уступает мазуту.

Наиболее высокую биологическую активность имеет диоксид азота, он оказывает сильное раздражающее действие на слизистую оболочку глаз и дыхательные пути. В районах расположения ТЭЦ, наряду с возрастанием доли углекислого газа, уменьшается доля кислорода в атмосфере, так как большое количество кислорода расходуется при сжигании топлива. Окись серы, попадающая с выбросами в атмосферу, наносит большой ущерб животному и растительному миру, она разрушает хлорофилл, имеющийся в растениях, повреждает листья и хвою. Окись углерода, попадая в организм человека и животных, соединяется с гемоглобином крови, в результате чего в организме возникает недостаток кислорода, и, как следствие, происходят различные нарушения нервной системы.

Оксид азота снижает прозрачность атмосферы и способствует образованию смога. Ускоряет распространение и увеличивает площадь загрязнения вредными веществами такое явление, как туман. Вредные вещества при взаимодействии с туманом образуют устойчивое сильнозагрязнённое мелкодисперсное облако — смог, имеющий наибольшую плотность у поверхности земли.

Кроме того, ТЭЦ загрязняют водоёмы, сбрасывая в них тёплую воду, в результате чего происходит цепная реакция, водоём зарастает водорослями, в нём нарушается кислородный баланс, что в свою очередь несёт угрозу жизни всем его обитателям.

Загрязняют окружающую среду и сточные производственные воды ТЭЦ, содержащие нефтепродукты. Эти воды станция сбрасывает после химических промывок оборудования, поверхностей нагрева паровых котлов и систем гидрозолоудаления.

Газотурбинная электростанция ТЭЦ Магнитогорская

ГТ ТЭЦ Магнитогорская обеспечивает резерв системы теплоснабжения города. Вводена в эксплуатацию 2010. Мощность электроэнергии: 18 МВт; теплоэнергии 80 Гкал/ч. Это современная высокотехнологичная установка, генерирующая электричество и тепловую энергию. Основу газотурбинной электростанции составляют один или несколько газотурбинных двигателей — силовых агрегатов, механически связанных с электрогенератором и объединенных системой управления в единый энергетический комплекс.
В энергоблоке ГТ ТЭЦ Магнитогорская была применена технология магнитного подшипника — ротор турбины и генератор вращаются в состоянии левитации — без контакта.
Преимущества магнитного подшипника:
1. не требует смазки;
2. экологически безопасен;
3. низкий уровень вибраций;
4. встроенная система контроля и мониторинга состояния;
5. отсутствие контакта между кольцами (нет трения = нет износа).
Надежность работы ГТ ТЭЦ подтверждена 13 летним опытом эксплуатации в любых климатических условиях.

Недостатками ГТ ТЭЦ можно считать то, что по соотношению вырабатываемой электрической энергии к тепловой она, как правило, проигрывает другим типам станций; высокая шумность, следовательно возникает необходимость шумоизоляции; сжигание газа влечет загрязнение атмосферы, которое мы уже рассматривали.

Альтернативные способы получения электроэнергии в

городе Магнитогорске

В результате проведенной работы я выяснил, что из всего многообразия альтернативных способов в нашем городе используются солнечные батареи в частном секторе в очень небольшом количестве. Остальные способы не используются.

Заключение

Выполняя этот проект, я узнал больше о способах получения электроэнергии, в том числе в городе Магнитогорске.

Когда я делал проект, у меня появился вопрос: почему мы платим деньги за электроэнергию, если мы можем получать её почти бесплатно с помощью альтернативных источников энергии, в отличии от ГЭС, ТЭС, АЭС.

Ответ прост: внедрение альтернативных способов получения электроэнергии обойдется государству гораздо дороже, чем обычные, часто используемые способы.

Конечно, преимуществ у альтернативных источников энергии больше и они кажутся более весомыми, чем недостатки. Однако, нам остается надеяться, что в скором времени человечество научится в полной мере использовать преимущества и бороться с недостатками, а особенно с главным из них: слишком высокой ценой.

Список литературы:

https://neftegaz.ru/tech_library/view/4043-Gidroelektrostantsiya-GES

https://ria.ru/eco/20090426/169135271.html

http://elstan.ru/articles/teplovye-elektrostantsii/10045/

http://www.enersy.ru/energiya/preimuschestva-i-nedostatki-gidroelektrostantsiy.html

http://www.nado5.ru/e-book/atomnaya-ehnergetika

http://greenevolution.ru/blogs/preimushhestva-i-nedostatki-solnechnyx-batarej/

http://electricalschool.info/energy/1539-jenergija-vetra-preimushhestva-i.html

http://www.rosteplo.ru/w/%D0%A2%D0%AD%D0%A6_%D0%9C%D0%9C%D0%9A

http://www.energosovet.ru/entech.php?idd=35

http://elektrovesti.net/57127_plyusy-i-minusy-biogaza

http://www.saveplanet.su 

Методы производства электроэнергии — Наука

Methods of Generating Electricity

Без электричества наша жизнь остановилась бы. Его использование стало настолько неизбежным, что люди редко задумываются о том, как он возникает. Чтобы узнать больше о различных методах выработки электроэнергии, прочитайте эту статью.

Fast Fact

Одна молния может нести ошеломляющие 5 миллиардов джоулей электричества и настолько мощна, что ею можно осветить около 150 миллионов лампочек.Этой электроэнергии хватит на то, чтобы весь город мог работать в течение одного дня без зависимости от других источников!

Электроэнергия вырабатывается из таких источников, как вода, ветер и солнечные лучи. Однако это косвенные источники. Непосредственными источниками преобразования энергии в электричество являются статическая энергия, электромагнитная индукция и химическая энергия. Он также включает фотоэлектрический процесс (преобразование света в электрическую энергию), прямое преобразование разницы температур, ядерную энергию и т. Д.

Хотели бы вы написать нам? Что ж, мы ищем хороших писателей, которые хотят распространять информацию. Свяжитесь с нами, и мы поговорим …

Давайте работать вместе!

Большая часть электроэнергии производится за счет тепловых двигателей. Тепло в основном поступает от сжигания ископаемого топлива, ядерного деления и других возобновляемых источников энергии. Ниже приведены основные методы, которые используются для выработки электроэнергии.

Методы производства электроэнергии

Турбины

Эти устройства в основном приводятся в движение жидкостью или газом, которые действуют как носители энергии.Турбины могут приводиться в движение ветром или проточной водой. Пар является одним из источников, которые могут приводить в действие турбины, и для этой среды вода кипятится с помощью тепла от методов ядерного деления, сжигания угля, природного газа или нефти. Ниже описаны основные методы производства электроэнергии.

Уголь

Первый шаг состоит в равномерном измельчении угольных блоков до мелких фрагментов и помещении их в печь, прикрепленную к водогрейному котлу.После нагрева и сгорания вода закипает, и образующийся пар используется для приведения в действие турбин для выработки электроэнергии. Альтернативный метод — использование водоугольного топлива (CWS), что помогает повысить эффективность производства электроэнергии. Из общего количества электроэнергии, производимой на нашей планете, около 40% приходится на нагрев угля.

Геотермальная энергия

Внутри Земли хранятся огромные запасы тепла, которое в основном передается от расплавленной мантии к коровым частям нашей планеты.Такие источники, как горячие источники, гейзеры и водоносные горизонты с горячей водой, используются геотермальными электростанциями. С помощью таких сред, как нагнетание холодной воды и других жидкостей, пар, произведенный из таких источников, улавливается и в дальнейшем используется для питания турбин для выработки электроэнергии. Более 15% всей электроэнергии в Исландии производится за счет геотермальной энергии.

Биомасса

Навоз, древесная щепа, части растений, такие как ветви и листья, органические отходы, разлагающаяся масса животных и т. Д., являются основными примерами биомассы. Эти материалы могут быть сожжены или подвергнуты сгоранию для выработки тепла, которое в дальнейшем используется для производства электроэнергии. Некоторые из источников также ферментируются для производства биогаза, который можно легко сжигать и преобразовывать в электричество с помощью биогазовых электростанций. Биомасса — очень многообещающий и важный источник возобновляемой энергии, и ее использование для выработки электроэнергии неуклонно растет.

Хотели бы вы написать нам? Что ж, мы ищем хороших писателей, которые хотят распространять информацию.Свяжитесь с нами, и мы поговорим …

Давайте работать вместе!

Ветряные турбины

Использование энергии ветра — еще один способ производства электроэнергии. Ветряные мельницы — это устройства, использующие энергию ветра и действующие как турбины для производства электроэнергии. Вращающиеся лопасти соединены с генераторами кабелями, которые передают кинетическую энергию генераторам. Ветряная турбина, имеющая самую большую мощность по выработке электроэнергии, — это Веста V-164. Его мощность оценивается в 8 МВт.

Гидроэлектростанции

Вода, текущая с большой силой, также может приводить в движение турбину для выработки электроэнергии. Между течением реки строятся плотины не только для хранения воды, но и для выработки электроэнергии с помощью турбин. Эти турбины устанавливаются на гидроаккумулирующей электростанции, и вода, падающая с большой высоты, используется для их вращения, что, в свою очередь, запускает генераторы, в конечном итоге производя электрическую энергию. В США имеется более 2000 гидроэлектростанций, которые производят около 7% всей электроэнергии, производимой в регионе.

Приливная энергия

Также наблюдается стремительный прогресс в производстве электроэнергии с использованием приливной энергии. Один из важнейших неиссякаемых источников энергии — приливные растения — используют энергию, переносимую волнами, которые с огромной силой обрушиваются на прибрежные районы. Турбины построены под зоной прерывателя внутри цилиндрических агрегатов, на которые волны ударяются с максимальной силой. Высокий импульс приливных волн способствует вращению турбин и, следовательно, генерирует электрическую энергию.Приливные заграждения и генераторы приливных потоков — два основных метода производства электроэнергии с использованием силы волн.

Фотоэлектрические панели

Они преобразуют солнечный свет непосредственно в электричество, в отличие от солнечных концентраторов тепла. Первоначально считалось, что они лучше всего подходят для сельской местности, где нет электросети или надлежащей инфраструктуры. Но с ростом осведомленности об их экологических преимуществах эти панели широко используются во всем мире.Многие эксперименты проводятся по использованию солнечной энергии. Германия является крупнейшим производителем фотоэлектрических панелей, а странами, использующими самые передовые технологии, являются Китай и Япония. В качестве материалов для изготовления солнечных чипов используются монокристаллический и поликристаллический кремний, теллурид кадмия, сульфид меди и т. Д. Панели заключены в модули, которые затем соединяются с соответствующими устройствами с помощью медных кабелей. Фотоэлектрические элементы используются для выработки электроэнергии в зданиях, на транспорте (автомобили, грузовики, велосипеды и т. Д.).), космических аппаратов и космических станций, зарядных устройств для сотовых телефонов и т. д.

Ядерное деление

Когда ядро ​​атома расщепляется, происходит химическая реакция, которая называется делением ядра. Этот процесс происходит в ядерном реакторе. Наиболее часто используемый минерал в процессе производства ядерной энергии — уран. Он помещается в активную зону реактора, и случайные нейтроны выделяются в активной зоне. Эти нейтроны сталкиваются с ядром атома урана, в результате чего происходит деление, вызывая цепную реакцию.Следствием этой реакции является выделение большого количества тепла в активной зоне. Но существуют хладагенты, которые поглощают тепло, которое далее по трубопроводу передается в паровой котел. После этого тепло от теплоносителя проходит через стенки трубок, в которых закипает вода, полученная из ближайшего природного источника. Нагретый H 2 O превращается в пар, который приводит в движение турбину, что приводит к выработке электроэнергии. Основная проблема этого метода — образование ядерных отходов, которые чрезвычайно вредны для окружающей среды.

Топливные элементы

Устройства, вырабатывающие электричество с помощью химической энергии, получаемой из определенных видов топлива, известны как топливные элементы. В этих устройствах происходит химическая реакция с участием топлива, окислителя и кислорода. Для них требуется постоянный запас топлива и необходимых химикатов, в отличие от устройств, называемых аккумуляторами (используемых в сотовых телефонах, радиоприемниках, портативных компьютерах и т. Д.), Которые требуют ограниченного количества химикатов и могут заряжаться несколько раз.Различные углеводороды, водород и метанол являются некоторыми примерами топлива, используемого в этом методе, и из этих вариантов водород является наиболее предпочтительным элементом для использования в качестве топлива. Надежность этих устройств выше, чем у других методов, таких как угольные электростанции, ветряные турбины и электричество, вырабатываемое фотоэлектрическими панелями. Будучи эффективными на 99%, они широко используются во многих коммерческих приложениях. Эту технологию можно назвать одной из самых перспективных и перспективных, которая в ближайшем будущем может превзойти другие методы.Исследования, касающиеся производства таких устройств в соответствии с экологической безопасностью и сохранением, все еще продолжаются.

Помимо этих методов, существуют другие методы получения электричества (например, батареи, статическое электричество, пьезоэлектрические кристаллы и т. Д.), Для которых проводится множество экспериментов. Эти методы используются в относительно небольших масштабах по сравнению с описанными выше способами. Нововведения в этой области могут привести к минимизации использования невозобновляемых источников энергии для производства электроэнергии.

,

ТОП-3 МЕТОДА ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ

Некоторые из революционных способов производства электроэнергии

Новая тенденция появилась во многих домашних хозяйствах, и тенденция заключается в генерировании собственного бесплатного электричества. Это происходит не из-за прерогативы, а из-за постоянного роста счетов за коммунальные услуги и экологических проблем, которые стали серьезной проблемой для людей.

Таким образом, потребителям был предложен ряд возможностей для выработки электроэнергии дома, на ферме или на предприятии.Но самый экономичный и простой в установке способ получения электричества в собственном доме — это комбинация солнечных элементов из фольги и энергии ветра; или, посредством магнитной силы, чтобы вызвать вечное движение, генерирующее электричество.

1) Солнечные элементы из фольги (солнечная энергия), которые вырабатывают электричество путем преобразования световой энергии Солнца в электрическую. Чтобы добиться этого, нам нужно использовать что-то специально разработанное для этого: солнечные батареи. Эти солнечные панели строятся по всему миру, и вы можете купить их примерно за 2000 долларов.К счастью, есть и другие варианты получения солнечных батарей. Кроме того, правительство в большинстве стран предоставляет субсидии домохозяйствам, которые вырабатывают электроэнергию с помощью солнечных батарей.

2) Энергия ветра вырабатывает электричество путем преобразования энергии ветра в электрическую. Для преобразования энергии ветра вам понадобится устройство, называемое ветряной мельницей. Ветер будет подниматься через крылья, заставляя крылья вращаться и, в свою очередь, генерировать электричество. Необходимо разместить ветряную мельницу там, где ветер в изобилии, потому что, когда ветер прекращается, вырабатывается электричество.Вы можете купить ветряную мельницу в готовых магазинах, но если вы хотите сэкономить, есть другие способы построить ветряную мельницу самостоятельно.

3) Магнетизм (магнитная энергия) использует магнитную силу, чтобы вызвать вечное движение, заставляя себя генерировать электричество. Это устройство, которое вы можете построить самостоятельно и получать бесплатную энергию из сети. Он называется магнитным генератором нулевой точки, и с его помощью вы можете получить бесплатную энергию. Используя магниты с магнитной силой, он будет производить вечное движение, которое, в свою очередь, создаст для вас бесплатную энергию.И он будет производить электроэнергию Non Stop. Кроме того, вам не нужно устанавливать машину далеко от дома, потому что она требует очень мало места и может быть размещена в любом месте вашего дома. Кроме того, он почти не издает звука. Вы можете приобрести магнитный генератор в готовых магазинах, но если вы хотите сэкономить, вы можете сами построить магнитный генератор за немногим более 100 долларов.

Недавно на рынке появились некоторые из очень популярных продуктов, основанных на этих концепциях для бесплатного производства электроэнергии.Эти гиды взяли штурмом Интернет, требуя значительно более низких счетов за электроэнергию по низкой цене.

И некоторые ДЕЙСТВИТЕЛЬНО оправдали свои требования, а некоторые вовсе НЕ. Чтобы узнать больше о самом дешевом способе производства электроэнергии, перейдите по ссылке ниже ….

,

8 оригинальных способов производства электроэнергии

Мир растущих потребностей в энергии и уменьшения ресурсов обязательно должен искать новые источники энергии.

Возобновляемая энергия была неизменно популярной темой для разговоров в последние годы, но эта идея задолго до всех разговоров о «пике добычи нефти»: например, и ветровая, и солнечная энергия — это идеи многовековой давности. Патент США под номером US389124 «Солнечный элемент» датируется 1888 годом, тогда как энергия ветра еще старше: в Европе ветряные мельницы использовались для измельчения зерна большую часть последнего тысячелетия.(Однако ветряная мельница впервые была использована для производства электроэнергии относительно недавно, в 1887 году в Глазго.)

Альтернативы ископаемому топливу и другим невозобновляемым ресурсам продолжают разрабатываться сегодня. Вот 8 из них. Хотя многие из них связаны со значительными начальными затратами и не могут быть реализованы в больших масштабах, они, тем не менее, представляют собой захватывающие новые направления мысли. Давайте с оптимизмом надеяться, что они помогут направить производство энергии в сторону более устойчивого будущего (с помощью крутой инженерии).

1. Океанские волны

Это история про буй и девушку. Это ужасный каламбур, но на самом деле это так: инженер-электрик Аннет фон Жуанн пытается использовать силу моря с помощью тщательно построенного буйка. Идея на удивление проста: закрепите медный провод. Оберните вокруг него магнит. Перемещайте магнит вверх и вниз (в данном случае это работа, оставленная волнам). Это вызывает электрический ток в проводе, как многие помнят из школьной лаборатории физики. Вдохновленный волнением воды во время серфинга у побережья Гавайев, фон Жуан расширил эту идею и поместил ее в море, пытаясь использовать постоянно присутствующую кинетическую энергию океанских волн.

Оказывается, идея работает: буй, который она проверила в своей лаборатории с моделированной средней волной, произвел три киловатта мощности, или достаточно для питания двух домов, что послужило толчком для дальнейших испытаний. Ее первые прототипы работали плохо, но, по ее словам, прорывы почти всегда рождаются из неудач, и траектория ее работы оптимистична: с годами ее конструкции улучшились, и впоследствии она увидела увеличение государственного финансирования науки. и интерес компаний, занимающихся чистой энергией.

Фон Жуанн остается ведущей фигурой в быстро развивающейся области исследований волновой энергии и работает в надежде, что ее буи однажды помогут донести чистую возобновляемую энергию до населения.

2. Мусор

Идея утопическая: машина, превращающая мусор в энергию. В данном случае небольшая доля утопии выдержала испытания в реальных условиях, хотя и в менее чем утопической обстановке: армия США использовала два генератора, работающих на отходах, для обеспечения своих операций недалеко от Багдада, Ирак.Это помогло решить ряд проблем армии во враждебных условиях, потому что это означало снижение потребности в автоколоннах с горючим и вывозе мусора, которые были легкой мишенью для атак. Так армия начала работать частично на собственных измельченных документах и ​​остатках еды.

Система работает примерно так: сухой мусор, такой как картон и пенополистирол, сжимается в гранулы и нагревается до тех пор, пока он не станет синтетическим газом, похожим на пропан. Между тем пищевые отходы и жидкости ферментируются в этанол.Син-газ и этанол объединяются для питания генератора. Генератору также требуется некоторая внешняя энергия, но он использует около 5% дизельного топлива, которое обычно требуется такому генератору, в то время как база производит только 1/30 того мусора, который он обычно потребовал бы.

Подвиги армии США продемонстрировали жизнеспособность мусорной мощи, так что, возможно, пришло время использовать наш мусор в менее воинственном контексте.

3. Футбол

Представьте, что вы используете энергию, вырабатываемую во время игры в футбол, для питания вашей лампы для чтения.Именно такая идея лежит в основе Soccket — футбольного мяча, в котором накапливается кинетическая энергия, генерируемая при использовании в игре в качестве электроэнергии.

Джессика Мэтьюз, студентка Гарвардского университета из Нигерии, хотела найти способ использовать футбол, самую популярную игру в мире, для улучшения жизни людей в развивающихся странах. Результат — Soccket, который может производить 3 часа светодиодного освещения при 30 минутах игры. Мэтьюз говорит, что она надеется, что ее изобретение сможет заменить использование керосина, вспоминая посещения Нигерии, во время которых из-за токсичного топлива для ламп ей было трудно дышать.

Хотя ограничения проекта очевидны — относительно высокая стоимость Soccket, небольшие масштабы, в которых он производит энергию, — идея создания энергии вне игры является элегантной.

4. Велосипеды

Поверните рукоятку, включите свет? Генераторы с приводом от велосипеда могут генерировать приличную мощность: например, профессиональный велосипедист может крутить педали при мощности более 400 Вт в течение часа (простой смертный может производить вдвое меньше). Конечно, это почти не влияет на потребление энергии большинством людей: в 2011 году средний американский дом потреблял 940 киловатт-часов в месяц.Тем не менее, вашего велосипеда более чем достаточно для зарядки небольших устройств, и, возможно, вы сможете понять, сколько усилий на самом деле влечет за собой киловатт-час.

Некоторые организации выделили велосипедные генераторы в центр внимания: этот датский отель предлагает своим клиентам ваучеры на питание в обмен на поездку на велосипеде-генераторе в течение 15 минут, а на музыкальном фестивале Rock the Bike в Сан-Франциско (где еще?) аудиосистема.

Энтузиасты «Сделай сам» могут найти несколько бесплатных планов для создания одного в Интернете.

5. Моча

Иногда недостаток ресурсов требует инновационных решений. Четыре нигерийские девушки изобрели метод выработки электричества за счет мочи. Их конструкция извлекает водород из мочи и может производить шесть часов энергии на каждый литр.

Естественно, их прототип имеет значительные ограничения — электролитической ячейке требуется энергия для запуска, а ее источник топлива, чистый водород, летуч. Однако их изобретение остается впечатляющим достижением инженерной мысли, особенно с учетом их возраста: на момент завершения проекта никому из них не исполнилось 15 лет.

6. Лежачие полицейские

В наши дни пассажиры на юго-западе Англии могут создавать энергию с помощью своих автомобилей: город начал установку электрокинетических дорожных пандусов. Каждая рампа содержит металлические пластины, которые сжимаются при проезде машины, питая внутренний генератор. В результате вырабатывается энергия от 5 до 50 кВт, в зависимости от веса проезжающего автомобиля.

Изобретатель из Дорсета Питер Хьюз потратил 12 лет на разработку своей концепции, которая может помочь включить светофоры, дорожные знаки и другую городскую инфраструктуру.

7. Морские микробы

Обычному наблюдателю кажется, что производящие электричество микробы балансируют на грани науки и научной фантастики. Однако они вполне реальны: исследователи из Университета Восточной Англии изучали штамм бактерий под названием Shewanella oneidensis , производящий белки, которые могут передавать электричество в металлы.

Морской микроб был успешно синтезирован искусственно, и лабораторные испытания показали, что энергия, производимая белками на его поверхности, может быть использована для производства электроэнергии.Доктор Том Кларк, биолог из Восточной Англии, объясняет:

Ученым уже давно известно, что бактерии влияют на минералы и металлы, но это первый раз, когда было показано, что они разряжают электрический ток напрямую. Могут быть и другие виды, у которых это получается даже лучше, чем у нас. Эти бактерии обладают огромным потенциалом в качестве микробных топливных элементов, в которых электричество может вырабатываться при распаде бытовых или сельскохозяйственных отходов.

8. Ветрозащитные ленты

Идея ветряных турбин широко распространена в кругах альтернативной энергетики, но идея ветряного пояса относительно нова: Шон Фрейн придумал ее во время поездки в 2004 году в автономное рыболовное сообщество на Гаити.В отличие от традиционной турбины с зубчатой ​​передачей, которая использует ветер для вращения своих роторов, ветровой пояс использует аэродинамическое явление, известное как аэроупругое флаттер, для извлечения энергии из ветра.

Технология позволяет извлекать энергию из ветра в масштабах и по цене, недоступной для традиционных турбин. Группа Humdinger Wind Energy, возглавляемая Фрейном, в настоящее время работает над разработкой и развертыванием нескольких размеров и моделей своего прототипа по всему миру — теперь ветровые ремни существуют в Гонконге, Испании, Эквадоре и Канаде.

,

GCSE Электричество | Пересмотреть методы его создания

Электричество — одна из основных тем, изучаемых в GCSE Physics. В этой викторине мы рассмотрим некоторые методы, используемые при производстве электроэнергии, в том числе ископаемое топливо, возобновляемые источники энергии на ядерном топливе.

Производство электроэнергии можно производить путем сжигания топлива, использования ядерных реакторов или улавливания энергии из окружающей среды. При сжигании топлива выделяются парниковые газы и другие газы, вызывающие кислотные дожди.Некоторые виды топлива, которые мы используем, например древесина и биодизель, являются экологически безопасными, в то время как другие, называемые невозобновляемым топливом, будут израсходованы в какой-то момент в будущем (хотя в отношении угля, нефти и газа мы могли бы дождаться десятков миллионов лет на их переформирование!).

Многие ученые считают, что сжигание ископаемого топлива вносит свой вклад в проблему глобального потепления. Причина, по которой они думают, что это происходит, заключается в том, что ископаемое топливо содержит углерод, который был заблокирован из углеродного цикла миллионы лет назад.Когда они сгорают, этот углерод (в форме углекислого газа) добавляется к углероду в современном углеродном цикле. Обычно количество углекислого газа в воздухе поддерживается довольно постоянным за счет фотосинтеза, но в настоящее время, похоже, фотосинтез не может справиться с этим дополнительным количеством, и уровни углекислого газа повышаются.

Когда топливо используется для производства электроэнергии, процесс, в том числе и ядерное топливо, по существу одинаков для всех. От топлива выделяется тепло, которое используется для кипячения воды.Эта вода превращается в пар. Пар проходит через турбины, которые затем вращаются с высокой скоростью. Затем вращение турбин используется для поворота генераторов для производства электроэнергии.

Возобновляемая энергия — это термин, который применяется к методам производства электроэнергии, которые всегда будут доступны, например, энергия ветра и воды. Солнечная энергия обычно связана с выработкой электричества из солнечного света (например, на солнечной энергии, садовых фонарей, на солнечных батареях, калькуляторов и т. Д.), Но вы фактически можете отслеживать большинство возобновляемых источников энергии обратно к Солнцу — геотермальная энергия является очевидным исключением.Энергия ветра, сила волн и большая часть гидроэлектроэнергии зависят от погоды, которая вызвана тем, что Солнце нагревает различные части поверхности Земли в разной степени. Биомасса и другие виды биотоплива, такие как древесина, поступают из пищевых цепей, которые требуют солнечного света для фотосинтеза.

Производство электроэнергии из возобновляемых источников имеет как преимущества, так и недостатки, например, солнечные батареи производят бесплатную электроэнергию и не загрязняют окружающую среду после установки, но они дороги и не производят электричество ночью.Аналогичные недостатки могут быть применены и к другим формам возобновляемой энергии — они не вырабатывают электричество постоянно, их объем варьируется, и их установка, как правило, требует больших затрат. С другой стороны, у них есть аналогичные преимущества: электричество, которое они производят, бесплатное после того, как они созданы, и оно всегда будет доступно. Одним из самых больших преимуществ является то, что когда они производят электричество, они не являются источником газов, которые вызывают кислотные дожди или способствуют парниковому эффекту, вызывающему глобальное потепление.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о