Ядерный взрыв поражающие факторы: Ядерный взрыв — самое страшное открытие человечества

Содержание

Поражающие факторы ядерного взрыва (стр. 1 из 2)

По предмету: «Физика».

На тему: «Поражающие факторы ядерного взрыва».

Выполнила: Ученицы 9Б класса Семейкина Е.В.

Проверила: Учитель физики Горюнова Е.В.

Алатырь, 2009год

1)Первое открытее.

2) Ядерное оружие.

3) Поражающие факторы ядерного взрыва.

4) Ударная волна.

5) Световое излучение.

6) Проникающая радиация.

7) Хиросима.

8) Нагасаки.

В 1896 г. французским физиком Антуаном Беккерелем было открыто явление радиоактивного излучения. Оно положило начало Эре изучения и использования ядерной энергии. Говоря о ней, выдающийся русский ученый В.И.Вернадский подчеркнул: «…С надеждой и опасением всматриваемся мы в нашего союзника и защитника». И его опасения подтвердились – вначале появилась не атомные электростанции, не мощные ледоколы, не космические корабли, а оружие чудовищной разрушительной силы. Его создали в1945 г. бежавшие перед началом второй мировой войны из фашисткой Германии в США и поддержанные правительством этой страны физики под руководством американского ученого Роберта Оппенгеймера.

Первый атомный взрыв был произведен 16 июля 1945 г. Это произошло в Америке, в пустынном районе близ городка Аламогордо. На верхней платформе специально построенной 33-метровой стальной вышки была взорвана атомная бомба. По приблизительным оценкам специалистов при этом выделилась энергия, эквивалентная энергии взрыва не менее 15-20 тысяч тонн тринитротолуола. Стальная конструкция вышки испарилась. На её месте образовалась воронка диаметром 37 метров и глубиной 1,8 м. Она являлась центром простиравшегося на большое расстояние кратера. В окружности 370 км была уничтожена вся растительность. Находившаяся на расстояние 150 м от точки взрыва стальная труба диаметром 10 см и высотой 5 м тоже испарилась. Прочная стальная конструкция высо

Воздушный ядерный взрыв: характеристика, поражающие факторы, последствия

Открытие Альбертом Эйнштейном способности веществ выделять большое количество энергии на атомном уровне положило начало ядерной физики. В 1930-е годы исследователи занимались моделированием воздушного ядерного взрыва в лабораторных условиях, но приобретенный опыт поставил под угрозу мирную жизнь на Земле.

Принцип действия

Для воздушного ядерного взрыва нужно создать определенные условия, провоцирующие детонацию. Обычно в качестве детонаторов используются тротил или гексоген, под воздействием которых радиоактивное вещество (обычно уран или плутоний) в течение 10 секунд сжимается до критической массы, а затем происходит мощный выброс энергии. Если бомба термоядерная, то в ней происходит процесс превращения легких элементов в более тяжелые. Выделяемая при этом энергия несет за собой еще более мощный взрыв.

Ядерный реактор

Ядерный реактор может использоваться и в мирных целях, так как делением можно управлять. Для этого применяются устройства, поглощающие нейтроны. Процессы, протекающие в такой установке, все время находятся в равновесии. Даже если происходят какие-либо незначительные изменения в параметрах, система вовремя гасит их и возвращается в рабочий режим. В аварийных ситуациях автоматически сбрасываются элементы, останавливающие цепную реакцию.

Первый опыт

Открытый Эйнштейном и изучаемый в дальнейшем физиками-ядерщиками выброс энергии заинтересовал не только ученых, но и военных. Возможность получения нового оружия, с помощью которого удастся создать мощные взрывы из малого количества вещества, привела к экспериментам с радиоактивными элементами.

Воздушный ядерный взрыв

Физически возможность взрыва со значительным поражающим действием доказал французский ученый Жолио-Кюри. Он открыл цепную реакцию, которая стала мощным источником энергии. Далее он планировал провести эксперименты с оксидом дейтерия, но в условиях Второй мировой войны это было невозможно сделать во Франции, поэтому в дальнейшем разработкой атомного оружия занялись английские ученые.

Первое взрывное устройство было опробовано летом 1945 года в Америке. По сегодняшним меркам бомба имела небольшую мощность, но в то время полученный эффект превзошел все ожидания. Сила взрыва и воздействие на окружающую территорию оказались колоссальными.

Результаты

Чтобы определить характеристики воздушно-ядерного взрыва, были проведены испытания. Присутствующие при этом впоследствии описали увиденное зрелище. Они наблюдали за яркой светящейся точкой на расстоянии нескольких сотен километров. Затем она превратилась в огромный шар, раздался очень громкий звук, и на километры прокатилась ударная волна. Шар взорвался, оставив после себя двенадцатикилометровое облако в форме гриба. На месте взрыва остался кратер, на десятки метров простирающийся в глубину и ширину. Земля вокруг него на несколько сотен метров превратилась в безжизненную, изрытую почву.

Кратеры после испытаний

Температура воздуха при ядерном взрыве существенно выросла, и сама атмосфера стала как будто плотнее. Это почувствовали даже очевидцы, находящиеся далеко от эпицентра в укрытии. Масштабы увиденного поражали, поскольку никто не предполагал, с какой мощью им предстоит столкнуться. Были сделаны выводы, что испытания прошли успешно.

Поражающие факторы воздушного ядерного взрыва

Военные сразу же поняли, что новое оружие может решить исход любой войны. Но в то время еще никто не задумывался о воздействии поражающих факторов ядерного взрыва. Ученые обратили внимание лишь на самые очевидные из них:

  • ударную волну;
  • световое излучение.

О радиоактивном заражении и ионизирующем излучении тогда еще никто не знал, хотя впоследствии именно проникающая радиация оказалась самой опасной. Так, если опустошение и разрушение локализовались на расстоянии нескольких сотен метров от эпицентра воздушного ядерного взрыва, то площадь рассеивания продуктов радиационного распада простиралась на сотни километров. Человек получал первое облучение, которое впоследствии отягощалось радиационными осадками, выпадающими на близлежащих территориях.

Также ученые еще не знали о том, что под действием воздушной ударной волны ядерного взрыва образуется электромагнитный импульс, который способен вывести из строя всю электронику на расстоянии сотен километров. Таким образом, первые испытатели даже представить себе не могли, насколько мощное оружие было создано, и насколько катастрофичными могут быть последствия от его применения.

Виды взрывов

Воздушные ядерные взрывы производятся на высоте тропосферы, то есть в пределах 10 км над поверхностью земли. Но помимо них есть и другие виды, например:

  1. Наземные или надводные проводятся на поверхности земли или воды соответственно. Огненный шар, разрастающийся из вспышки, при этом имеет вид восходящего из-за горизонта солнца.
  2. Высотные, проводимые в атмосфере. Светящаяся вспышка при этом обладает очень большими размерами, она зависает в воздухе и не касается земных или водных поверхностей.
  3. Подземные или подводные происходят в толще земной коры или на глубине. Обычно вспышка при этом не наблюдается.
  4. Космические. Такие происходят в сотнях километров от земного шара, за пределами околопланетного пространства и сопровождаются облаком из светящихся молекул.
Испытания проводятся и в космосе

Разные виды отличаются не только вспышкой, но и другими внешними характеристиками, а также поражающими факторами, интенсивностью взрыва, его результатами и последствиями.

Наземные испытания

Первые бомбы испытывались прямо на поверхности земли. Именно такие типы взрывов сопровождаются четко выраженным грибовидным облаком в воздухе и кратером, простирающимся на несколько десятков, а то и сотен метров в почве. Наземный взрыв выглядит наиболее устрашающее, так как облако, низко зависшее над землей, притягивает в себя не только пыль, но и существенную часть грунта, что делает его практически черным. Частицы грунта перемешиваются с химическими элементами, а затем выпадают на землю, что делает территорию радиоактивно зараженной и совершенно непригодной для жизни. В военных целях это может использоваться для уничтожения мощных строений или объектов, заражения обширных территорий. Разрушительный эффект при этом наиболее мощный.

Надводные взрывы

Испытания также проводятся над поверхностью водной глади. В этом случае облако будет состоять из водяной пыли, снижающей интенсивность светового излучения, но разносящей радиоактивные частицы на огромные расстояния, в результате чего они могут выпасть вместе с осадками в тысяче километров от места испытаний.

Взрыв на воде

В военных целях это может быть использовано для поражения морских баз, портов и кораблей либо для заражения воды и побережья.

Воздушные взрывы

Этот вид может производиться на большом расстоянии от земли (в этом случае он называется высоким) или на маленьком (низким). Чем выше произошел взрыв, тем меньше у поднимающегося облака сходств с формой гриба, так как столб пыли с земли не достигает его.

Вспышка при таком виде является очень яркой, так что ее видно за сотни километров от эпицентра. Взрывающийся из нее огненный шар с температурой, измеряемой в миллионах градусов Цельсия, поднимается вверх и посылает мощное световое излучение. Все это сопровождается громким звуком, отдаленно напоминающим раскаты грома.

По мере охлаждения шар преобразуется в облако, которое создает поток воздуха, подхватывающий пыль с поверхности. Получившийся столб может достигнуть облака, если оно не очень высоко над землей. В дальнейшем облако начинает рассеиваться, и поток воздуха ослабевает.

Высотный взрыв

В результате такого взрыва могут быть поражены и объекты в воздухе, и сооружения, и люди, находящиеся поблизости от него.

Применение в боевых целях

Хиросима и Нагасаки — единственные города, в отношении которых было применено ядерное оружие. Случившаяся там трагедия не имела себе равных.

Жители испытали на себе действие воздушного ядерного взрыва, инициированного на небольшом расстоянии от поверхности земли и классифицируемого как низкий. При этом была полностью разрушена инфраструктура, погибло около 200 тысяч населения. Две трети из них умерли мгновенно. Те, кто находился в эпицентре, распались на молекулы от чудовищных температур. Световое излучение оставляло от них тени на стенах.

Разрушения в Хиросиме

Люди, которые были дальше от эпицентра, погибали от ударной волны и гамма-излучения ядерного взрыва. Часть выживших получила летальную дозу облучения, но врачи еще не знали о лучевой болезни, поэтому никто не понимал, почему после мнимых признаков выздоровления происходит ухудшение состояния пациентов. Медики считали это дизентерией, но в течение 3-8 недель больные, у которых открывалась сильная рвота, умирали. Странная болезнь людей, выживших во время атомной бомбардировки Хиросимы и Нагасаки, стала стимулом к началу исследований в области ядерной медицины.

Высотные взрывы

После бомбардировки японских городов ядерное оружие не применялось в боевых целях, но исследование его возможностей продолжалось в разных местах. Учения в атмосфере позволили понять, что происходит при взрыве на высоте. Оказалось, что при нахождении центра в 10 км от поверхности земли возникает сравнительно небольшая по силе волна ядерного взрыва, но световое и радиационное излучение при этом увеличиваются. Чем выше был произведен взрыв, тем сильнее повышается ионизация, что сопровождается выходом из строя радиотехнических средств.

С поверхности все это выглядит как большая яркая вспышка, сменяющаяся облаком испаряющихся молекул водорода, углерода и азота. Поток воздуха при этом не достигает земли, поэтому столба пыли не возникает. Также практически не происходит заражения территории, поскольку на большой высоте воздушные массы перемещаются слабо, поэтому целью такого ядерного взрыва может являться поражение самолетов, ракет или спутников.

Подземные испытания

В последнее время между странами существует договор, регламентирующий ядерные испытания и предписывающий проводить их только под землей, что позволяет минимизировать загрязнения и непригодные для жизни площади, образующиеся вокруг полигонов.

Испытания под землей считаются наименее опасными, так как действие всех поражающих факторов приходится на породы. Увидеть светящиеся вспышки или грибовидное облако при этом невозможно, от него остается только столб пыли. Но ударная волна приводит к землетрясению и обрушению грунта. Обычно это используется в мирных целях, для решения народохозяйственных задач. Например, так можно разрушать горные массивы или образовывать искусственные водоемы.

Подводные испытания

Взры

Поражающие факторы ядерного взрыва — Студопедия

В зависимости от задач, решаемых применением ядерного оружия, характера и местонахождения объектов ядерных ударов, ядерные взрывы могут осуществляться в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). Соответственно этому различают воздушный, наземный (надводный) или подземный (подводный) взрывы.

К воздушным ядерным взрывам относятся взрывы в воздухе на такой высоте, когда светящаяся область взрыва не касается поверхности земли (воды). Такого рода взрывы могут применяться для разрушения городских и промышленных зданий, для поражения людей и техники на поле боя, для поражения самолетов на аэродромах. Воздушные взрывы в этих случаях могут производиться на высоте нескольких сотен и тысяч метров над землей (низкий воздушный взрыв). Воздушный ядерный взрыв может быть применен для поражения летящих самолетов и самолетов-снарядов, ракет. В этом случае взрыв будет произведен на больших высотах над поверхностью земли (высокий ядерный взрыв).

К наземным (надводным) ядерным взрывам относятся взрывы на поверхности земли или воды или же в воздухе на небольшой высоте, когда светящаяся область касается поверхности земли (воды).

Наземный (надводный) взрыв может, применяться для разрушения различных наземных сооружений, аэродромов, железнодорожных узлов, убежищ тяжелого типа, а также для поражения надводных кораблей. Такой взрыв может быть произведен на высоте нескольких десятков метров над землей (водой) или непосредственно у поверхности земли (воды).


Точку на поверхности земли (воды), над которой произошел взрыв, называют эпицентром взрыва.

Подземный ядерный взрыв может применяться для разрушения особо прочных подземных сооружений, аэродромов, подземных заводов и складов. Наземный или подземный взрыв иногда может быть применен также для заражения местности в тылу противника радиоактивными веществами.

Подводный ядерный взрыв может быть применен для поражения подводных лодок, надводных кораблей и для разрушения разного рода гидротехнических сооружений.

Для уничтожения баллистических ракет на очень больших высотах и в космическом пространстве также могут быть использованы ядерные заряды. Такого рода ядерные взрывы можно отнести к космическим.

Наблюдаемые при ядерном взрыве явления в значительной мере зависят от вида взрыва.


Ядерный взрыв в воздухе начинается кратковременной ослепительной вспышкой (миллисекунды). Благодаря быстрому выделению энергии температура в зоне реакции достигает нескольких миллионов градусов. Вслед за вспышкой в воздухе образуется огненный шар.

В результате ядерного взрыва при огромных температурах происходит увеличение давления в зоне реакции. За короткое время огненный шар достигает значительных размеров. К концу третьей секунды с момента взрыва ядерного боеприпаса средней мощности огненный шар достигает в поперечнике примерно 300 м.

Вследствие расхода энергии на нагревание воздуха и излучения ее в окружающее пространство, а также в результате увеличения размеров светящейся области температура, а, следовательно, и интенсивность излучения световой энергии уменьшаются, и светящаяся область превращается в облако взрыва.

Поверхность огненного шара является источником электромагнитных излучений, главным образом в виде светового излучения.

Рис. Развитие воздушного ядерного взрыва: а — вспышка, б — огненный шар; в — грибовидное облако

Сразу же после взрыва часть энергии излучается в виде мягких рентгеновских лучей, которые практически полностью поглощаются слоем воздуха, окружающим компоненты взрыва. С ростом температуры до 8000°С излучаются преимущественно ультрафиолетовые лучи, а по мере ее уменьшения примерно до 2000°С испускаются в основном видимые и инфракрасные лучи. Таким образом, световое излучение включает в себя лучи инфракрасного, видимого и ультрафиолетового участков спектра. Через 2—3 с или более, в зависимости от мощности взрыва, действие светового излучения прекращается.

Наряду с испусканием светового излучения происходит расширение огненного шара, на передней границе которого создается слой сжатого воздуха. Характерными особенностями этого слоя воздуха являются резкий скачок давления на передней границе, а также сверхзвуковая скорость его распространения. Область высокого давления, распространяющаяся от места взрыва со сверхзвуковой скоростью, называется ударной волной, а его передняя граница — фронтом ударной волны.

Ударная волна в начальной фазе своего развития движется совместно с расширяющимся огненным шаром. В связи с тем, что воздух в ударной волне сильно сжат и нагрет, температура в ударной волне возрастает до нескольких тысяч градусов.

Огненный шар и ударная волна первоначально распространяются совместно. После того как скорость расширения огненного шара станет меньше скорости распространения ударной волны, последняя отрывается от поверхности огненного шара и распространяется самостоятельно. Отрыв ударной волны приводит к тому, что непосредственно за зоной сжатия образуется зона разрежения. Ударная волна с этого момента включает как область повышенного давления, так и следующую за ней область разрежения, или пониженного давления.

В огненном шаре сосредоточены радиоактивные осколки деления, непрореагировавшие ядра и радиоактивные ядра, образовавшиеся под воздействием нейтронов. Поэтому одновременно с ударной волной и световым излучением из зоны ядерного взрыва распространяется мощный поток гамма-лучей и нейтронов, которые образуются в ходе ядерной реакции и процессе распада осколков деления. Хотя в процессе ядерных реакций образуются и другие виды радиоактивных излучений (α- и β-частицы), но из-за малой проникающей способности они не могут распространяться на значительные расстояния от центра взрыва.

Гамма-лучи и нейтроны обладают свойством проникать через значительные толщи различных материалов. По этой причине гамма-лучи и нейтроны, испускаемые при ядерном взрыве, принято называть проникающей радиацией.

Основным источником гамма-излучения при ядерном взрыве являются радиоактивные осколки деления. Нейтроны испускаются в основном непосредственно в процессе реакции деления, и только незначительная часть их — с радиоактивными осколками. Основная часть нейтронов поглощается корпусом боеприпаса и поэтому поверхности земли не достигает.

Завершающая фаза ядерного взрыва — образование грибовидного облака. Примерно через 10 с после взрыва свечение огненного шара прекращается, ударная волна переходит в звуковую и исчезает, горячие продукты взрыва поднимаются вверх и расширяются; образуется характерное для ядерных взрывов грибовидное облако. Восходящие потоки воздуха поднимают столб пыли. При низких воздушных взрывах столб пыли быстро догоняет облако и соединяется с ним.

Подъем облака продолжается до тех пор, пока его плотность в результате остывания станет равной плотности окружающего воздуха. Время подъема облака на максимальную высоту составляет около 7—10 мин.

Высота подъема облака и его размеры зависят от мощности ядерного взрыва. Так, например, при взрыве мощностью 30 килотонн верхняя кромка облака достигает максимальной высоты 10 — 11 км.

Втягиваемая в облако с поверхности земли пыль содержит радиоактивные вещества, образовавшиеся в грунте в непосредственной близости к эпицентру взрыва под воздействием нейтронов. Вначале температура в облаке настолько высока, что попавшаяся в него пыль частично расплавляется.

Плотность облака остается меньше плотности воздуха, поэтому облако поднимается вверх; вместе с тем оно, как правило, относится ветром от места взрыва. Выпавшие радиоактивные вещества создают радиоактивное заражение местности и объектов.

Приход ударной волны, скорость распространения которой оказывается выше скорости звука, сопровождается мощным громоподобным звуком. Звук взрыва может быть слышен на расстоянии многих десятков километров.

Взрыв водородной бомбы внешне характеризуется теми же признаками, что и взрыв ядерной бомбы. Однако вследствие большей мощности водородных бомб все видимые явления, сопровождающие взрыв, выглядят значительно грандиознее.

Высотный и космический ядерные взрывы внешне имеют свои особенности. Картина высотного ядерного взрыва напоминает воздушный взрыв, однако при этом взрыве с земли не поднимается столб пыли. При взрыве наблюдаются огненный шар и клубящееся облако.

При высотном ядерном взрыве поражение летящего самолета происходит или вследствие разрушения конструкции самолета под действием ударной волны и светового излучения, или в результате гибели его экипажа от проникающей радиации.

Ядерный взрыв в космосе происходит на такой высоте, на которой плотность воздуха практически равна нулю. Поэтому энергия взрыва передается только тому веществу, из которого состоит ядерный заряд и связанные с ним устройства, например ракета-носитель. Разогреваясь до очень высокой температуры, все это вещество испаряется и превращается в сильно ионизированный газ. В отличие от всех других видов взрыва значительная часть энергии при космическом взрыве излучается в окружающее пространство в виде световых ультрафиолетовых и рентгеновских лучей. Эти два вида излучения воздухом не поглощаются — они воздействуют на летящий объект, разогревая его до высокой температуры. Так как космический взрыв происходит в безвоздушном пространстве, ударной волны при этом не образуется. Для наземных объектов ядерный взрыв на высоте в несколько сотен километров не представляет большой опасности. Однако он может вызвать помехи в работе радиосредств.

Наземный ядерный взрыв. В отличие от воздушного взрыва светящаяся область наземного ядерного взрыва соприкасается с землей. При этом светящаяся область в начале имеет форму полушария, лежащего основанием на поверхности земли. В зоне соприкосновения светящейся области с землей поверхностный слой грунта под действием огромных давлений и высокой температуры размельчается, расплавляется, частично превращается в пар, перемешиваясь при этом с радиоактивными продуктами взрыва.

При наземном взрыве большое количество грунта втягивается воздушными потоками в облако. Некоторая часть расплавленного грунта после остывания превращается в стекловидный сильно радиоактивный шлак черного или серого цвета, который покрывает поверхность земли в радиусе нескольких сотен метров от эпицентра взрыва.

Существенным отличием наземного взрыва от воздушного является то, что возникающие при наземном взрыве сильные воздушные потоки на поверхности земли приводят к образованию значительно более мощного пылевого облака и столба пыли, чем при воздушном взрыве.

При наземном взрыве обычно образуется воронка, размеры которой тем значительней, чем ниже центр взрыва и чем больше мощность взрыва.

Подземный ядерный взрыв.При подземном ядерном взрыве вспышка и светящаяся область взрыва могут не наблюдаться, так как все процессы с раскаленными и сильно сжатыми газами и парами происходят под землёй. Подземный ядерный взрыв приводит к образованию в грунте сильной ударной волны, которая, распространяясь, вызывает колебания в поверхностном слое земли, напоминающие землетрясение.

При неглубоких взрывах пары и газы прорываются на поверхность земли, выбрасывают грунт и образуют большую воронку, размеры которой зависят от мощности заряда, глубины взрыва и типа грунта: Выброшенный из воронки грунт, перемешиваясь с радиоактивными продуктами взрыва, оседает на землю, покрывая местность в районе взрыва слоем толщиной в несколько десятков сантиметров. Вследствие этого в районе воронки подземного взрыва радиоактивное заражение местности значительно больше по сравнению с воздушным и наземным взрывами.

При подземном взрыве проникающая радиация, и в особенности световое излучение, значительно слабее, чем при воздушном или наземном. Характерного грибовидного облака при подземном взрыве обычно не образуется.

Подводный ядерный взрыв. Для внешней картины подводного взрыва характерным является то, что вспышка и светящаяся область взрыва, как правило, не видны. При подводном взрыве раскаленные продукты взрыва образуют в воде светящуюся область в виде газового пузыря; в месте взрыва на поверхности воды наблюдается ярко освещенное пятно. Энергия, излучаемая светящейся областью, расходуется в основном на испарение и нагревание окружающих слоев воды.

Вследствие быстрого расширения газового пузыря в воде образуется мощная ударная волна. При подводном взрыве (на небольшой глубине) поднимается столб воды, достигающий высоты нескольких километров. Над ним образуется облако, состоящее главным образом из паров воды, которое увеличивается в размерах, достигая нескольких сотен метров в диаметре.

Спустя несколько секунд после взрыва из столба начинается падение воды, не разогретой до газообразного состояния. При этом у основания столба образуется огромное облако, состоящее из мелких капель воды. По мере падения массы воды это облако быстро расширяется в высоту. Одновременно с этим из облака выпадает радиоактивный дождь. Через некоторое время подъем водяного столба прекращается и начинается его разрушение.

При подводном взрыве на поверхности воды образуются волны, высота которых на малом расстоянии от места взрыва может достигать нескольких десятков метров. По мере удаления от места взрыва высота волн быстро уменьшается. Если подводный взрыв происходит в неглубоком водоеме, то на дне его образуется большая воронка, и в воздух вместе с водой поднимается значительное количество грунта.

Таким образом, ядерный взрыв отличается от взрыва обычных боеприпасов не только большей мощностью, но также и тем, что наряду с ударной волной, характерной для взрыва обычных боеприпасов, он может нанести поражение световым излучением, проникающей радиацией и образующимися при взрыве радиоактивными веществами. Ядерный взрыв сопровождается выделением огромного количества энергии и способен на значительном расстоянии мгновенно поразить незащищенных людей, открыто стоящую технику, сооружения и различные ма

Поражающие факторы ядерного взрыва — Википедия. Что такое Поражающие факторы ядерного взрыва

При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30— 50 % в световое излучение, до 5 % на проникающую радиацию и электромагнитное излучение и до 15 % в радиоактивное заражение местности.

При воздушном взрыве нейтронного боеприпаса доли энергии распределяются своеобразно: ударная волна до 10 %, световое излучение 5 — 8 % и примерно 85 % энергии уходит в проникающую радиацию (нейтронное и гамма-излучения)[1]

Ударная волна и световое излучение аналогичны поражающим факторам традиционных взрывчатых веществ, но световое излучение в случае ядерного взрыва значительно мощнее.

Ударная волна разрушает строения и технику, травмирует людей и оказывает отбрасывающее действие быстрым перепадом давления и скоростным напором воздуха. Последующие за волной разрежение (падение давления воздуха) и обратный ход воздушных масс в сторону развивающегося ядерного гриба также могут нанести некоторые повреждения.

Световое излучение действует только на неэкранированные, то есть ничем не прикрытые от взрыва объекты, может вызвать воспламенение горючих материалов и пожары, а также ожоги и поражение зрения человека и животных.

Проникающая радиация оказывает ионизирующее и разрушающее воздействие на молекулы тканей человека, вызывает лучевую болезнь. Особенно большое значение имеет при взрыве нейтронного боеприпаса. От проникающей радиации могут защитить подвалы многоэтажных каменных и железобетонных зданий, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше), некоторой защитой обладает бронированная техника.

Радиоактивное заражение — при воздушном взрыве относительно «чистых» термоядерных зарядов (деление-синтез) этот поражающий фактор сведён к минимуму. И наоборот, в случае взрыва «грязных» вариантов термоядерных зарядов, устроенных по принципу деление-синтез-деление, наземного, заглублённого взрыва, при которых происходит нейтронная активация содержащихся в грунте веществ, а тем более взрыва так называемой «грязной бомбы» может иметь решающее значение.

Электромагнитный импульс выводит из строя электрическую и электронную аппаратуру, нарушает радиосвязь.

В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах[2]:

Доли энергии воздействующих факторов ядерного взрыва
Высота / ГлубинаРентгеновское излучениеСветовое излучениеТеплота огненного шара и облакаУдарная волна в воздухеДеформация и выброс грунтаВолна сжатия в грунтеТеплота полости в землеПроникающая радиацияРадиоактивные вещества
100 км64 %24 %6 %6 %
70 км49 %38 %1 %6 %6 %
45 км1 %73 %13 %1 %6 %6 %
20 км40 %17 %31 %6 %6 %
5 км38 %16 %34 %6 %6 %
0 м34 %19 %34 %1 %менее 1 %?5 %6 %
Глубина камуфлетного взрыва30 %30 %34 %6 %

Световое излучение

Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна Образование головной ударной волны (эффект Маха) при взрыве 20 кт Разрушения в Хиросиме в результате атомной бомбардировки Жертва ядерной бомбардировки Хиросимы

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

Ударная волна

Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения — это небольшая зона, в которой происходит почти мгновенное увеличение температуры, давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру.[3] Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.

Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160—3600 кг/м² (0,22—0,36 атм/0.02-0.035 МПа).

Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.

Защитой от ударной волны для человека являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.

Проникающая радиация

Проникающая радиация (ионизирующее излучение) представляет собой гамма-излучение и поток нейтронов, испускаемых из зоны ядерного взрыва в течение единиц или десятков секунд.

Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно поглощается атмосферой. Проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов, однако ядерный заряд может быть специально сконструирован таким образом, чтобы увеличить долю проникающей радиации для нанесения максимального ущерба живой силе (так называемое нейтронное оружие). На больших высотах, в стратосфере и космосе проникающая радиация и электромагнитный импульс — основные поражающие факторы.

Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, электронных, оптических и других приборах за счет нарушения кристаллической решетки вещества и других физико-химических процессов под воздействием ионизирующих излучений.

Защитой от проникающей радиации служат различные материалы, ослабляющие гамма-излучение и поток нейтронов. Разные материалы по-разному реагируют на эти излучения и по-разному защищают.

От гамма-излучения хорошо защищают материалы, имеющие элементы с высокой атомной массой (железо, свинец, низкообогащённый уран), но эти элементы очень плохо ведут себя под нейтронным излучением: нейтроны относительно хорошо их проходят и при этом генерируют вторичные захватные гамма-лучи, а также активируют радиоизотопы, надолго делая саму защиту радиоактивной (например, железную броню танка; свинец же не проявляет вторичной радиоактивности). Пример слоёв половинного ослабления проникающего гамма-излучения[4]: свинец 2 см, сталь 3 см, бетон 10 см, каменная кладка 12 см, грунт 14 см, вода 22 см, древесина 31 см.

Нейтронное излучение в свою очередь хорошо поглощается материалами, содержащими лёгкие элементы (водород, литий, бор), которые эффективно и с малым пробегом рассеивают и поглощают нейтроны, при этом не активируются и гораздо меньше выдают вторичное излучение. Слои половинного ослабления нейтронного потока: вода, пластмасса 3 — 6 см, бетон 9 — 12 см, грунт 14 см, сталь 5 — 12 см, свинец 9 — 20 см, дерево 10 — 15 см. Лучше всех материалов поглощают нейтроны водород (но в газообразном состоянии он имеет малую плотность), гидрид лития и карбид бора.

Идеального однородного защитного материала от всех видов проникающей радиации нет, для создания максимально лёгкой и тонкой защиты приходится совмещать слои различных материалов для последовательного поглощения нейтронов, а затем первичного и захватного гамма-излучения (например, многослойная броня танков, в которой учтена и радиационная защита; защита оголовков шахтных пусковых установок из ёмкостей с гидратами лития и железа с бетоном), а также применять материалы с добавками. Универсальны широко применяемые в строительстве защитных сооружений бетон и увлажнённая грунтовая засыпка, содержащие и водород и относительно тяжёлые элементы. Очень хорош для строительства бетон с добавкой бора (20 кг

Поражающие факторы ядерного взрыва — это… Что такое Поражающие факторы ядерного взрыва?


Поражающие факторы ядерного взрыва
        совокупность поражающих воздействий ядерного взрыва (См. Ядерный взрыв). К ним относятся: ударная волна, световое излучение, проникающая радиация и радиоактивное заражение. Ударная волна — основной поражающий фактор при взрыве ядерного боеприпаса. На её образование приходится примерно половина энергии взрыва. Ударная волна может наносить поражение людям и животным, разрушать наземные и подземные сооружения, позиции войск, уничтожать и повреждать боевую технику, транспортные пути. Световое излучение (ультрафиолетовые и инфракрасные лучи) вызывает у людей и животных Ожоги, различной степени и ослепление, а при воздействии на боевую технику, вооружение, горючие материалы — оплавление, обугливание или возгорание. Проникающая радиация, а также образующееся радиоактивное заражение местности, воздуха и различных объектов в районе взрыва и по пути перемещения радиоактивного облака вызывают у людей и животных Лучевое поражение или лучевую болезнь (См. Лучевая болезнь). Характер и степень воздействия П. ф. я. в. зависят от мощности ядерного боеприпаса, вида взрыва, расстояния от его центра, степени защиты войск, метеорологических условий и характера местности. См. также Ядерное оружие.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Пор-де-Гале
  • Порай-Кошиц Александр Евгеньевич

Смотреть что такое «Поражающие факторы ядерного взрыва» в других словарях:

  • Поражающие факторы ядерного взрыва — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • поражающие факторы ядерного взрыва — branduolinio sprogimo naikinamieji veiksniai statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Branduolinio sprogimo smūgio, šilumos, šviesos ir ↑ branduolinės radioaktyviosios spinduliuotės poveikis žmogui, medžiagai ir ginkluotei.… …   Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

  • Поражающие факторы ядерного оружия — физические процессы и явления, которые возникают при ядерном взрыве и определяют его поражающее воздействие К ним относятся ударная волна, световые излучения, проникающая радиация, радиоактивное заражение и электромагнитный импульс. Характер,… …   Морской словарь

  • Эпицентр ядерного взрыва — У этого термина существуют и другие значения, см. Эпицентр (значения). Ядерное оружие …   Википедия

  • Оружие с использованием энергии ядерного взрыва — разновидность ядерного оружия, основанное на преобразовании энергии ядерного взрыва в т.н. вторичные поражающие факторы определенной направленности. Включает ядерный заряд небольшой мощности и преобразователь энергии. В качестве последнего м.б.… …   Словарь черезвычайных ситуаций

  • История ядерного оружия — Ядерное оружие …   Википедия

  • Испытание ядерного оружия — Основные типы ядерных испытаний: 1. надземные, 2. подземные, 3. в верхних слоях атмосферы, 4. подводные. Ядерное оружие …   Википедия

  • Испытания ядерного оружия — Основные типы ядерных испытаний: 1. надземные, 2. подземные, 3. в верхних слоях атмосферы, 4. подводные. Ядерное оружие …   Википедия

  • ядролық жарылыстың зақымдаушы факторлары — (Поражающие факторы ядерного взрыва) ядролық жарылыс кезінде пайда болатын соққылы ауа толқыны, сәуле зақымы, өткір радиация, электромагниттік импульс. Бесінші зақымдаушы факторға жердің радиоактивтік элементтермен улануы кіреді …   Казахский толковый терминологический словарь по военному делу

  • Проникающая радиация — Взрыв 14 килотонной атомной бомбы на полигоне в Неваде Ядерное оружие Ядерная война …   Википедия

Предложения со словосочетанием ПОРАЖАЮЩИЕ ФАКТОРЫ ЯДЕРНОГО ВЗРЫВА

Основной целью проведения операции «Аргус» являлось изучение влияния поражающих факторов ядерного взрыва, произведённого в условиях космического пространства, на земные радиолокаторы, системы связи и электронную аппаратуру спутников и баллистических ракет.

Неточные совпадения:

Все они были посвящены защите от поражающих факторов ядерного оружия, а на одном из них даже рассматривался допотопный дозиметр ДП-5В. На стенах — скучные плакаты-стенды: «Ядерный взрыв», «Поражающие факторы ядерного взрыва», «Химическое оружие», «Бактериологическое оружие». Так может выглядеть земля после наводнения или ядерного взрыва. Как добывается такая энергия в космической среде или как дополняется? Нельзя же представить, что ядерные взрывы совершаются там постоянно из секунды в секунду? Итак, ядерные взрывы происходят практически ежеминутно.

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова запальник (существительное):

Кристально
понятно

Понятно
в общих чертах

Могу только
догадываться

Понятия не имею,
что это

Другое
Пропустить

Гораздо мощней ядерного взрыва! Десятки тысяч ядерных взрывов, аварии на примитивных атомных станциях, захоронённые в океане тысячи тонн боевых отравляющих веществ — это ещё начало. На их счёту уже было несколько ядерных взрывов. Вот на земле вздымается страшный гриб ядерного взрыва. Ядерного взрыва не произошло. Конечно, такая защита не спасает от лазеров и излучения близких ядерных взрывов, но от них супердредноут и так отлично защищён бронёй. Свет, излучаемый при ядерном взрыве, меняет мир сильнее, чем излучаемый фонариком. Но та, которая излучается при ядерном взрыве, обладает большей способностью менять окружающий мир — большей энергией, и так далее. Проникающая радиация (поток гамма-излучений и нейтронов при ядерном взрыве; действие продолжается 10 — 15 с) приводит к возникновению лучевой болезни. Шесть кораблей-берсеркеров вышли из вероятностного пространства прямо в эпицентр мощного ядерного взрыва и развалились на радиоактивные осколки. Прежний узор исчез под покровом новых кратеров, был уничтожен ядерными взрывами — почти со всеми защитниками планеты, которые там оказались.

Предложения со словосочетанием ПОРАЖАЮЩИЕ ФАКТОРЫ ЯДЕРНОГО ВЗРЫВА

Основной целью проведения операции «Аргус» являлось изучение влияния поражающих факторов ядерного взрыва, произведённого в условиях космического пространства, на земные радиолокаторы, системы связи и электронную аппаратуру спутников и баллистических ракет.

Неточные совпадения:

Все они были посвящены защите от поражающих факторов ядерного оружия, а на одном из них даже рассматривался допотопный дозиметр ДП-5В. На стенах — скучные плакаты-стенды: «Ядерный взрыв», «Поражающие факторы ядерного взрыва», «Химическое оружие», «Бактериологическое оружие». Так может выглядеть земля после наводнения или ядерного взрыва. Как добывается такая энергия в космической среде или как дополняется? Нельзя же представить, что ядерные взрывы совершаются там постоянно из секунды в секунду? Итак, ядерные взрывы происходят практически ежеминутно.

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова стремить (глагол), стремя:

Кристально
понятно

Понятно
в общих чертах

Могу только
догадываться

Понятия не имею,
что это

Другое
Пропустить

Гораздо мощней ядерного взрыва! Десятки тысяч ядерных взрывов, аварии на примитивных атомных станциях, захоронённые в океане тысячи тонн боевых отравляющих веществ — это ещё начало. На их счёту уже было несколько ядерных взрывов. Вот на земле вздымается страшный гриб ядерного взрыва. Ядерного взрыва не произошло. Конечно, такая защита не спасает от лазеров и излучения близких ядерных взрывов, но от них супердредноут и так отлично защищён бронёй. Свет, излучаемый при ядерном взрыве, меняет мир сильнее, чем излучаемый фонариком. Но та, которая излучается при ядерном взрыве, обладает большей способностью менять окружающий мир — большей энергией, и так далее. Проникающая радиация (поток гамма-излучений и нейтронов при ядерном взрыве; действие продолжается 10 — 15 с) приводит к возникновению лучевой болезни. Шесть кораблей-берсеркеров вышли из вероятностного пространства прямо в эпицентр мощного ядерного взрыва и развалились на радиоактивные осколки. Прежний узор исчез под покровом новых кратеров, был уничтожен ядерными взрывами — почти со всеми защитниками планеты, которые там оказались.

6 Воздействие на человека и окружающую среду | Действие ядерной бомбы и другого оружия

при взрыве намного меньше, чем количество, произведенное в реакторе, проработавшем несколько лет.

Однако потребление продуктов питания, загрязненных радиоактивными осадками в результате ядерного испытания, оказалось серьезной проблемой как на НТС 20 , 21 , так и на Семипалатинском полигоне, ядерном полигоне в Советском Союзе. 22 Природа этой проблемы не была полностью оценена до 1963 года — примерно в то время, когда заканчивались атмосферные испытания в Соединенных Штатах и ​​бывшем Советском Союзе. Наибольшее беспокойство вызывает йод-131, период полураспада которого составляет 8 дней. Именно благодаря сочетанию нескольких довольно уникальных обстоятельств этот радионуклид стал основным радионуклидом, вызывающим озабоченность с точки зрения загрязнения пищевых продуктов как при испытаниях ядерного оружия, так и при авариях на реакторах.

Значительные объемы активности 131 I возникают в результате ядерных взрывов; этот радионуклид также является летучим и не конденсируется на частицах до позднего времени, после чего он становится ассоциированным с поверхностью выпадающих частиц. 23 Большая часть общей поверхностной активности приходится на более мелкие частицы, поэтому 131 I обычно переносится дальше. Более мелкие частицы также предпочтительно задерживаются растительностью 24 , из которых они теряются с периодом полувыведения около 10 дней.Дойная корова, если она получает свою полную норму корма со свежего пастбища, будет потреблять в день количество 131 л, которое содержится примерно на 50 квадратных метрах, 25 , и будет выделять до 1 процента этого количества. суточная доза на литр молока. 26 Обычно человек, потребляющий молоко, концентрирует 30 процентов потребляемого им молока в щитовидной железе. Щитовидная железа — это очень маленькая железа, она весит около 20 граммов у взрослых и всего около 2 граммов у младенцев. Таким образом, йод предпочтительно удерживается на растительности, которую корова эффективно отбирает и быстро выделяет в молоко; Затем младенец концентрирует большую часть этого йода в молоке в чрезвычайно маленькой железе, производя, таким образом, относительно большую дозу.

«Коровы на заднем дворе» вызывают большее беспокойство, поскольку такие коровы обычно потребляют больше пастбищ, чем хранимых кормов, и владельцы часто выпивают больше среднего количества молока. Козы также вызывают большее беспокойство; они пасут меньше территории, но выделяют в 1 литр молока примерно в 10 раз больше дневной нормы йода. При ядерных взрывах за пределами США следует учитывать потребление молока других животных, таких как овцы, лошади и верблюды. Факторы переноса молока у этих животных не очень хорошо известны.Ученые Национального института рака проводят исследовательскую программу по определению таких факторов, но результаты еще не опубликованы. 27 Часто молоко таких животных не потребляется сразу, а превращается в другие продукты, что дает некоторую возможность для 131 I разлагаться перед употреблением.

Для гипотетического устройства (с примерно 50-процентной долей деления, т. Е. 50 процентов взрывной мощности от термоядерного синтеза), которое производит интегрированную внешнюю дозу в 1 рад, доза на щитовидную железу младенца будет составлять около 16 рад от потребления молока. с 131 I и несколькими другими радионуклидами (132 Te, 132 I, 133 I и 135 I).Эти результаты основаны на опубликованных расчетах, сделанных для снимков NTS. 28

Другими радионуклидами, вызывающими озабоченность с точки зрения загрязненных пищевых продуктов, являются 89 Sr, 90 Sr и 137 Cs. Они имеют общие характеристики: высокий выход деления (доля делений, которые производят радионуклид или его прекурсоры), летучесть (радионуклида или его прекурсоров) и эффективное выделение в молоко. Другие органы, вызывающие беспокойство, — пищеварительный тракт, красный костный мозг и поверхности костей.

До сих пор для этого обсуждения предполагалось, что люди и дойные животные расположены вместе. Часто это не так. Реконструкция дозы на щитовидную железу по прошлым событиям включала в себя тщательно продуманные попытки восстановить источники молока или перемещение молока из одного региона в другой. 29 , 30 Если бы этот тип прогнозной оценки был включен в анализ эффектов, необходимо было бы иметь базу данных, которая давала бы плотность населения, а также дойных животных.

Важно отметить, что этот путь, потребление зараженной пищи, может быть относительно более важным для выпадения осадков в результате ядерных взрывов за пределами города в том смысле, что дойные животные с большей вероятностью будут находиться в сельской местности. Проблема зараженного молока после аварии

,

Военные учения с применением ядерного оружия


Ядерное оружие, как и любое другое оружие, требует испытаний, суть которых заключается в установлении степени и эффективности поражения живой силы и техники потенциального противника в результате ядерного взрыва.

Сегодня известно, что восемь ядерных держав произвели более 2 тысяч ядерных взрывов:
— 1054 испытания США на полигонах в Колорадо, Неваде, районе Миссисипи, Маршалловых островах, Аляске, Нью-Мексико;
— СССР 715 испытаний на полигонах в Казахстане, в Семипалатинске, на Новой Земле, в Тоске и других местах России;
— UK 45 испытание на полигонах в Австралии и США;
— Франция 210 полигонов в Алжире и Французской Полинезии;
— Китай провел 45 испытаний в Синьцзян-Уйгурском автономном районе;
— Тест Индия 6 в Покхране;
— Пакистан 6 испытание в районе холмов Чагай;
— DPR 2 испытан на территории Хвадаэри.

Первый ядерный взрыв был проведен Советским Союзом в августе 1949 года, а последний — в октябре 1990 года.

Из всех ядерных испытаний СССР только два проводились в виде учений: на Тоцком артиллерийском полигоне под Оренбургом в сентябре 1954 года и на Семипалатинском полигоне в сентябре 1956 года. В США было проведено 8 учений. с применением ядерного оружия.

Кодовое название упражнений Тотов было «Снежок».В официальном сообщении ТАСС говорится, что атомный взрыв проводится в соответствии с планами экспериментальных и научных исследований. Целью этих испытаний было изучение влияния поражающих факторов ядерного взрыва на решение задач защиты от атомной атаки.

Известно, что ядерное оружие обладает значительной разрушительной силой и имеет ряд специфических поражающих факторов: ударная волна, сильное световое излучение, проникающая радиация, радиоактивное заражение территории.Чтобы выработать эффективные методы защиты от ядерного удара, необходимо было пересмотреть все наработанные способы ведения боевых действий, повысить живучесть страны и, самое главное, защитить население.

Следует отметить, что к 1954 году на вооружении армии США было около 700 атомных бомб; они провели 45 испытаний ядерного оружия, включая две бомбардировки японских городов Нагасаки и Хиросима. К этому времени американская сторона уже разработала способы защиты от этого грозного оружия и изучила основные параметры поражения при использовании атомной бомбы.

К 1954 году в СССР было проведено восемь испытаний атомного оружия, также были тщательно изучены результаты бомбардировок Хиросимы и Нагасаки. Это позволило разработать не только инструкции по ведению боевых действий в условиях применения противником ядерного оружия, но и разработать методы защиты от разрушающих факторов ядерного взрыва. Многие рекомендации, разработанные советскими специалистами, актуальны и сегодня.

Расческа

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *